ISSN: 0300-8932 Factor de impacto 2023 7,2
Vol. 7. Núm. D.
Páginas 26D-31D (Junio 2007)

Novedades en la reducción de la frecuencia cardiaca
Ritmo sinusal normal. Nuevos conceptos anatómicos y fisiológicos del nódulo sinusal. Corriente If

Normal Sinus Rhythm. Recent Anatomical and Physiological Insights into the Sinus Node. The If Current

José M. Guerra¿Juan Cinca

Opciones

El nodo sinusal es una estructura altamente especializada, cuyas células generan despolarizaciones espontáneas repetidas a una frecuencia variable que determina la frecuencia cardiaca. Las células nodales se disponen sobre una matriz de tejido conectivo denso formando cordones entrelazados, que en la periferia se mezclan con los miocitos auriculares contráctiles. La zona central, encargada de generar los impulsos, se caracteriza por estar relativamente desacoplada del resto de la aurícula, mientras que la zona periférica presenta un grado de acoplamiento cada vez mayor. Las células nodales presentan una fase diastólica caracterizada por una despolarización lenta progresiva que transporta el potencial de reposo al umbral de excitabilidad y genera un nuevo potencial de acción. La activación de la corriente If genera esta fase diastólica y está implicada también en el control del ritmo cardiaco mediado por el sistema nervioso autónomo.

Palabras clave

Nodo sinoauricular
Estructura
Fisiología
Potenciales
Frecuencia cardiaca
Este artículo solo puede leerse en pdf
Bibliografía
[1.]
G. Schram, M. Pourrier, P. Melnyk, S. Nattel.
Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function.
Circ Res, (2002), 90 pp. 939-950
[2.]
H. Stannius.
Zwei reihen physiologisher Versuche.
Arch Anat Physiol Wiss Med, (1852), 2 pp. 85-100
[3.]
A. Keith, M. Flack.
The form and nature of the muscular connections between the primary divisions of the vertebrae heart.
J Anat Physiol, (1907), 41 pp. 172-189
[4.]
T.N. James.
Anatomy of the human sinus node.
The Anatomical Record, (1961), 141 pp. 109-139
[5.]
R.C. Truex, M.Q. Smythe, M.J. Taylor.
Reconstruction of the human sinoatrial node.
The Anatomical Record, (1967), 159 pp. 371-378
[6.]
K.R. Anderson, S.Y. Ho, R.H. Anderson.
Location and vascular supply of sinus node in human heart.
Br Heart J, (1979), 41 pp. 28-32
[7.]
I.S. Chiu, C.R. Hung, S.W. How, M.R. Chen.
Is the sinus node visible grossly? A histological study of normal hearts.
Int J Cardiol, (1989), 22 pp. 83-87
[8.]
D. Sanchez-Quintana, J.A. Cabrera, J. Farre, V. Climent, R.H. Anderson, S.Y. Ho.
Sinus node revisited in the era of electroanatomical mapping and catheter ablation.
Heart, (2005), 91 pp. 189-194
[9.]
P.W. Oosthoek, S. Viragh, A.E. Mayen, M.J. Van Kempen, W.H. Lamers, A.F. Moorman.
Immunohistochemical delineation of the conduction system. I: The sinoatrial node.
Circ Res, (1993), 73 pp. 473-481
[10.]
S. Verheule, M.J. Van Kempen, S. Postma, M.B. Rook, H.J. Jongsma.
Gap junctions in the rabbit sinoatrial node.
Am J Physiol, (2001), 280 pp. H2103-H2115
[11.]
E.E. Verheijck, A. Wessels, A.C. Van Ginneken, J. Bourier, M.W. Markman, J.L. Vermeulen, et al.
Distribution of atrial and nodal cells within the rabbit sinoatrial node: models of sinoatrial transition.
Circulation, (1998), 97 pp. 1623-1631
[12.]
J.P. Boineau, R.B. Schuessler, C.R. Mooney, A.C. Wylds, C.B. Miller, R.D. Hudson, et al.
Multicentric origin of the atrial depolarization wave: the pacemaker complex. Relation to dynamics of atrial conduction, P-wave changes and heart rate control.
Circulation, (1978), 58 pp. 1036-1048
[13.]
R.W. Joyner, F.J. Van Capelle.
Propagation through electrically coupled cells. How a small SA node drives a large atrium.
Biophys J, (1986), 50 pp. 1157-1164
[14.]
R.D. Veenstra.
Size and selectivity of gap junction channels formed from different connexins.
J Bioenerg Biomemb, (1996), 28 pp. 327-337
[15.]
J.M. Anumonwo, H.Z. Wang, E. Trabka-Janik, B. Dunham, R.D. Veenstra, M. Delmar, et al.
Gap junctional channels in adult mammalian sinus nodal cells. Immunolocalization and electrophysiology.
Circ Res, (1992), 71 pp. 229-239
[16.]
R.G. Gourdie, C.R. Green, N.J. Severs, R.P. Thompson.
Immunolabelling patterns of gap junction connexins in the developing and mature rat heart.
Anatomy and Embryology, (1992), 185 pp. 363-378
[17.]
E. Trabka-Janik, W. Coombs, L.F. Lemanski, M. Delmar, J. Jalife.
Immunohistochemical localization of gap junction protein channels in hamster sinoatrial node in correlation with electrophysiologic mapping of the pacemaker region.
J Cardiovasc Electrophysiol, (1994), 5 pp. 125-137
[18.]
L.M. Davis, M.E. Rodefeld, K. Green, E.C. Beyer, J.E. Saffitz.
Gap junction protein phenotypes of the human heart and conduction system.
J Cardiovasc Electrophysiol, (1995), 6 pp. 813-822
[19.]
K.F. Kwong, R.B. Schuessler, K.G. Green, J.G. Laing, E.C. Beyer, J.P. Boineau, et al.
Differential expression of gap junction proteins in the canine sinus node.
Circ Res, (1998), 82 pp. 604-612
[20.]
J.E. Saffitz, K.G. Green, R.B. Schuessler.
Structural determinants of slow conduction in the canine sinus node.
J Cardiovasc Electrophysiol, (1997), 8 pp. 738-744
[21.]
H. Dobrzynski, J. Li, J. Tellez, I.D. Greener, V.P. Nikolski, S.E. Wright, et al.
Computer three-dimensional reconstruction of the sinoatrial node.
Circulation, (2005), 111 pp. 846-854
[22.]
M. Baruscotti, A. Bucchi, D. Difrancesco.
Physiology and pharmacology of the cardiac pacemaker («funny») current.
Pharmacol Ther, (2005), 107 pp. 59-79
[23.]
D. DiFrancesco.
Funny channels in the control of cardiac rhythm and mode of action of selective blockers.
Pharmacol Res, (2006), 53 pp. 399-406
[24.]
D. DiFrancesco.
Pacemaker mechanisms in cardiac tissue.
Ann Rev Physiol, (1993), 55 pp. 455-472
[25.]
D. DiFrancesco.
The contribution of the ‘pacemaker’ current (If) to generation of spontaneous activity in rabbit sino-atrial node myocytes.
J Physiol, (1991), 434 pp. 23-40
[26.]
R.B. Robinson, S.A. Siegelbaum.
Hyperpolarization-activated cation currents: from molecules to physiological function.
Ann Rev Physiol, (2003), 65 pp. 453-480
[27.]
S. Weidmann.
Effect of current flow on the membrane potential of cardiac muscle.
J Physiol, (1951), 115 pp. 227-236
[28.]
M. Vassalle.
Analysis of cardiac pacemaker potential using a «voltage clamp» technique.
Am J Physiol, (1966), 210 pp. 1335-1341
[29.]
D. Noble, R.W. Tsien.
The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres.
J Physiol, (1968), 195 pp. 185-214
[30.]
O. Hauswirth, D. Noble, R.W. Tsien.
Adrenaline: mechanism of action on the pacemaker potential in cardiac Purkinje fibers.
Science, (1968), 162 pp. 916-917
[31.]
D. DiFrancesco.
A new interpretation of the pace-maker current in calf Purkinje fibres.
J Physiol, (1981), 314 pp. 359-376
[32.]
H.F. Brown, D. DiFrancesco, S.J. Noble.
How does adrenaline accelerate the heart?.
Nature, (1979), 280 pp. 235-236
[33.]
K. Yanagihara, H. Irisawa.
Inward current activated during hyperpolarization in the rabbit sinoatrial node cell.
Pflugers Archiv, (1980), 385 pp. 11-19
[34.]
D. DiFrancesco.
The cardiac hyperpolarizing-activated current, If. Origins and developments.
Prog Biophys Mol Biol, (1985), 46 pp. 163-183
[35.]
M.R. Boyett, H. Honjo, I. Kodama.
The sinoatrial node, a heterogeneous pacemaker structure.
Cardiovasc Res, (2000), 47 pp. 658-687
[36.]
Z. Zhou, S.L. Lipsius.
Properties of the pacemaker current (If) in latent pacemaker cells isolated from cat right atrium.
J Physiol, (1992), 453 pp. 503-523
[37.]
E. Cerbai, M. Barbieri, A. Mugelli.
Characterization of the hyperpolarization- activated current, I(f), in ventricular myocytes isolated from hypertensive rats.
J Physiol, (1994), 481 pp. 585-591
[38.]
H. Yu, F. Chang, I.S. Cohen.
Pacemaker current (If) in adult canine cardiac ventricular myocytes.
J Physiol, (1995), 485 pp. 469-483
[39.]
U.C. Hoppe, D.J. Beuckelmann.
Characterization of the hyperpolarization-activated inward current in isolated human atrial myocytes.
Cardiovasc Res, (1998), 38 pp. 788-801
[40.]
K. Zorn-Pauly, P. Schaffer, B. Pelzmann, P. Lang, H. Machler, B. Rigler, et al.
If in left human atrium: a potential contributor to atrial ectopy.
Cardiovasc Res, (2004), 64 pp. 250-259
[41.]
E. Cerbai, M. Barbieri, A. Mugelli.
Occurrence and properties of the hyperpolarization-activated current If in ventricular myocytes from normotensive and hypertensive rats during aging.
Circulation, (1996), 94 pp. 1674-1681
[42.]
J. Qu, Y. Kryukova, I.A. Potapova, S.V. Doronin, M. Larsen, G. Krishnamurthy, et al.
MiRP1 modulates HCN2 channel expression and gating in cardiac myocytes.
J Biol Chem, (2004), 279 pp. 43497-43502
[43.]
E.A. Accili, G. Redaelli, D. DiFrancesco.
Differential control of the hyperpolarization-activated current (I(f)) by cAMP gating and phosphatase inhibition in rabbit sino-atrial node myocytes.
J Physiol, (1997), 500 pp. 643-651
[44.]
A. Barbuti, B. Gravante, M. Riolfo, R. Milanesi, B. Terragni, D. DiFrancesco.
Localization of pacemaker channels in lipid rafts regulates channel kinetics.
[45.]
D. DiFrancesco, A. Ferroni, M. Mazzanti, C. Tromba.
Properties of the hyperpolarizing-activated current (If) in cells isolated from the rabbit sino-atrial node.
J Physiology, (1986), 377 pp. 61-88
[46.]
D. DiFrancesco, C. Tromba.
Acetylcholine inhibits activation of the cardiac hyperpolarizing-activated current, If.
Pflugers Archiv, (1987), 410 pp. 139-142
[47.]
D. DiFrancesco, C. Tromba.
Inhibition of the hyperpolarization-activated current (If) induced by acetylcholine in rabbit sino-atrial node myocytes.
J Physiol, (1988), 405 pp. 477-491
[48.]
D. DiFrancesco, C. Tromba.
Muscarinic control of the hyperpolarization- activated current (If) in rabbit sino-atrial node myocytes.
J Physiol, (1988), 405 pp. 493-510
[49.]
B. Sakmann, A. Noma, W. Trautwein.
Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart.
Nature, (1983), 303 pp. 250-253
[50.]
D. DiFrancesco, P. Ducouret, R.B. Robinson.
Muscarinic modulation of cardiac rate at low acetylcholine concentrations.
Science, (1989), 243 pp. 669-671
[51.]
D. DiFrancesco, P. Tortora.
Direct activation of cardiac pacemaker channels by intracellular cyclic AMP.
Nature, (1991), 351 pp. 145-147
[52.]
W.N. Zagotta, N.B. Olivier, K.D. Black, E.C. Young, R. Olson, E. Gouaux.
Structural basis for modulation and agonist specificity of HCN pacemaker channels.
Nature, (2003), 425 pp. 200-205
[53.]
C. Viscomi, C. Altomare, A. Bucchi, E. Camatini, M. Baruscotti, A. Moroni, et al.
C terminus-mediated control of voltage and cAMP gating of hyperpolarization-activated cyclic nucleotide-gated channels.
J Biol Chem, (2001), 276 pp. 29930-29934
[54.]
E.A. Accili, C. Proenza, M. Baruscotti, D. DiFrancesco.
From funny current to HCN channels: 20 years of excitation.
News in Physiological Sciences, (2002), 17 pp. 32-37
[55.]
C. Altomare, B. Terragni, C. Brioschi, R. Milanesi, C. Pagliuca, C. Viscomi, et al.
Heteromeric HCN1-HCN4 channels: a comparison with native pacemaker channels from the rabbit sinoatrial node.
J Physiol, (2003), 549 pp. 347-359
[56.]
C. Ulens, J. Tytgat.
Functional heteromerization of HCN1 and HCN2 pacemaker channels.
J Biol Chem, (2001), 276 pp. 6069-6072
[57.]
T. Xue, E. Marban, R.A. Li.
Dominant-negative suppression of HCN1-and HCN2-encoded pacemaker currents by an engineered HCN1 construct: insights into structure-function relationships and multimerization.
Circ Res, (2002), 90 pp. 1267-1273
[58.]
B. Gravante, A. Barbuti, R. Milanesi, I. Zappi, C. Viscomi, D. DiFrancesco.
Interaction of the pacemaker channel HCN1 with filamin A.
J Biol Chem, (2004), 279 pp. 43847-43853
[59.]
J. Qu, C. Altomare, A. Bucchi, D. DiFrancesco, R.B. Robinson.
Functional comparison of HCN isoforms expressed in ventricular and HEK 293 cells.
Pflugers Archiv, (2002), 444 pp. 597-601
[60.]
A. Moroni, L. Gorza, M. Beltrame, B. Gravante, T. Vaccari, M.E. Bianchi, et al.
Hyperpolarization-activated cyclic nucleotide-gated channel 1 is a molecular determinant of the cardiac pacemaker current I(f).
J Biol Chem, (2001), 276 pp. 29233-29241
[61.]
W. Shi, R. Wymore, H. Yu, J. Wu, R.T. Wymore, Z. Pan, et al.
Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues.
Circ Res, (1999), 85 pp. e1-e6
[62.]
T.M. Ishii, M. Takano, H. Ohmori.
Determinants of activation kinetics in mammalian hyperpolarization-activated cation channels.
J Physiol, (2001), 537 pp. 93-100
[63.]
J. Stieber, S. Herrmann, S. Feil, J. Loster, R. Feil, M. Biel, et al.
The hyperpolarization- activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart.
Proc Natl Acad Sci U S A, (2003), 100 pp. 15235-15240
Copyright © 2007. Sociedad Española de Cardiología
¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?