ISSN: 0300-8932 Factor de impacto 2023 7,2
Vol. 7. Núm. D.
Páginas 19D-25D (Junio 2007)

Novedades en la reducción de la frecuencia cardiaca
Fisiopatología del miocardio isquémico. Importancia de la frecuencia cardiaca

The Pathophysiology of Myocardial Ischemia. The Importance of Heart Rate

José Moreu-Burgosa¿Carlos Macaya-Miguelb

Opciones

La isquemia miocárdica es un fenómeno plurifactorial que produce un cambio hacia el metabolismo anaerobio en la célula muscular. Los cambios inducidos pueden ser reversibles en un primer momento antes de llegar al daño irreversible con muerte celular. El aumento en el aporte de oxígeno o la reducción de los requerimientos energéticos del miocardio protegen de la isquemia miocárdica. Desde el punto de vista fisiopatológico, el control y la reducción de la frecuencia cardiaca añadidos al restablecimiento del flujo coronario pueden ser la piedra angular en el tratamiento de esta afección.

Palabras clave

Fisiología
Isquemia miocárdica
Taquicardia
Miocito
Este artículo solo puede leerse en pdf
Bibliografía
[1.]
G.R. Heyndrickx, H. Baig, P. Nellens, I. Leusen, M.C. Fishbein, S.F. Vatner.
Depression of regional blood flow and wall thickening after brief coronary occlusions.
Am J Physiol, (1978), 234 pp. H653-H659
[2.]
E. Braunwald, R.A. Kloner.
The stunned myocardium: prolonged, postischemic ventricular dysfunction.
Circulation, (1982), 66 pp. 1146-1149
[3.]
S.H. Rahimtoola.
The hibernating myocardium.
Am Heart J, (1989), 117 pp. 211-221
[4.]
C.E. Murry, R.B. Jennings, K.A. Reimer.
Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium.
Circulation, (1986), 74 pp. 1124-1136
[5.]
L.N. Katz.
The performance of the heart.
Circulation, (1960), 21 pp. 483-498
[6.]
S.J. Sarnoff, E. Braunwald, G.H. Welch, R.B. Case, W.N. Stainsby, R. Macruz.
Hemodynamic determinants of oxygen consumption of the heart with special reference to esnion-time index.
Am J Physiol, (1958), 192 pp. 148-156
[7.]
A.D. Goldberg, L.C. Becker, R. Bonsall, J.D. Cohen, M.W. Ketterer, P.G. Kaufman, et al.
Ischemic, hemodynamic, and neurohormonal responses to mental and exercise stress. Experience from the Psychophysiological Investigations of Myocardial Ischemia Study (PIMI).
Circulation, (1996), 94 pp. 2402-2409
[8.]
E. Braunwald.
Control of myocardial oxygen consumption: Physiologic and clinical consideration.
Am J Cardiol, (1971), 27 pp. 416-432
[9.]
M.A. Young, S.F. Vatner.
Regulation of large coronary arteries.
Circ Res, (1986), 59 pp. 579-596
[10.]
R.J. Bache, D.S. Hess.
Reactive hyperemia following one-beat coronary occlusions in the awake dog.
Am J Physiol, (1986), 250 pp. H474-H481
[11.]
S.E. Martin, S.D. Lenhard, L.S. Schmarkey, S. Offenbacher, B.M. Odle.
Adenosine regulates coronary blood flow during increased work and decreased supply.
Am J Physiol, (1993), 264 pp. H1438-H1446
[12.]
R.M. Palmer, A.G. Ferrige, S. Moncada.
Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor.
Nature, (1987), 327 pp. 524-526
[13.]
R.E. Austin Jr, N.G. Smedira, T.M. Squiers, J.I. Hoffman.
Influence of cardiac contraction and coronary vasomotor tone on regional myocardial blood flow.
Am J Physiol, (1994), 266 pp. H2542-H2553
[14.]
J.I. Hoffman, J.A. Spaan.
Pressure-flow relations in coronary circulation.
Physiol Rev, (1990), 70 pp. 331-390
[15.]
T.P. Smith Jr, J.M. Canty Jr.
Modulation of coronary autoregulatory responses by nitric oxide. Evidence for flow-dependent resistance adjustments in conscious dogs.
Circ Res, (1993), 73 pp. 232-240
[16.]
S. Rajagopalan, S. Dube, J.M. Canty Jr.
Regulation of coronary diameter by myogenic mechanisms in arterial microvessels greater than 100 microns in diameter.
Am J Physiol, (1995), 268 pp. H788-H793
[17.]
F.J. Klocke.
Measurements of coronary blood flow and degree of stenosis: current clinical implications and continuing uncertainties.
J Am Coll Cardiol, (1983), 1 pp. 31-41
[18.]
W. Schaper, G. Gorge, B. Winkler, J. Schaper.
The collateral circulation of the heart.
Prog Cardiovasc Dis, (1988), 31 pp. 57-77
[19.]
G.D. Buckberg, D.E. Fixler, J.P. Archie, J.I. Hoffman.
Experimental subendocardial ischemia in dogs with normal coronary arteries.
Circ Res, (1972), 30 pp. 67-81
[20.]
A. Chauhan, P.A. Mullins, G. Taylor, M.C. Petch, P.M. Schofield.
Cardioesophageal reflex: A mechanism for «linked angina» in patients with angiographically proven coronary artery disease.
J Am Coll Cardiol, (1996), 27 pp. 1621-1628
[21.]
R.R. Baliga, S.D. Rosen, P.G. Camici, J.S. Kooner.
Regional myocardial blood flow redistribution as a cause of postprandial angina pectoris.
Circulation, (1998), 97 pp. 1144-1149
[22.]
K.A. Reimer, R.B. Jennings.
Total ischemia in dog hearts, in vitro. II. High energy phosphate depletion and associated defects in energy metabolism, cell volume regulation and sarcolemmal integrity.
Circ Res, (1981), 49 pp. 901-911
[23.]
A.G. Kleber.
Resting membrana potencial extracellular potassium activity, and intracellular sodium activity during acute global ischemia in isolated perfused guinea pig hearts.
Circ Res, (1983), 52 pp. 442-450
[24.]
D.J. Hearse.
Stunning: a radical review.
Cardiovasc Drugs Ther, (1991), 5 pp. 853-876
[25.]
M. Yanasigawa, H. Kurihara, S. Kimura, Y. Tomobe, M. Kobayashi, Y. Mitsui, et al.
A novel potent constrictor peptide produced by vascular endotelial cells.
Nature, (1988), 332 pp. 411-415
[26.]
S.G. Ellis, C.I. Henschke, T. Sandor, J. Wynne, E. Braunwald, R.A. Kloner.
Time course of functional and biochemical recovery of myocardium salvaged by reperfusion.
J Am Coll Cardiol, (1983), 1 pp. 1047-1055
[27.]
E. Thaulow, B.D. Guth, G. Heusch, E. Gilpin, R. Schulz, K. Kroeger, et al.
Characteristics of regional myocardial stunning after exercise in dogs with chronic coronary stenosis.
Am J Physiol, (1989), 257 pp. H113-H119
[28.]
G.J. Gross, J.A. Auchampach.
Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs.
Circ Res, (1992), 70 pp. 223-233
[29.]
R.D. Foreman.
Mechanisms of cardiac pain.
Ann Rev Physiol, (1999), 61 pp. 143-167
[30.]
C.J. Benson, S.P. Eckert, E.W. McCleskey.
Acid-evoked currents in cardiac sensory neurons: a possible mediator of myocardial ischemic sensation.
Circ Res, (1999), 84 pp. 921-928
[31.]
J.C. Longhurst, S.C. Tjen-A-Looi, L.W. Fu.
Cardiac sympathetic afferent activation provoked by myocardial ischemia and reperfusion. Mechanisms and reflexes.
Ann N Y Acad Sci, (2001), 940 pp. 74-95
[32.]
A. Gaspardone, F. Crea, F. Tomai, F. Versaci, M. Iamele, G. Gioffre, et al.
Muscular and cardiac adenosine-induced pain is mediated by A1 receptors.
J Am Coll Cardiol, (1995), 25 pp. 251-257
[33.]
F. Crea, A. Gaspardone, J.C. Kaski, G. Davies, A. Maseri.
Relation between stimulation site of cardiac afferent nerves by adenosine and distribution of cardiac pain: results of a study in patients with stable angina.
J Am Coll Cardiol, (1992), 20 pp. 1498-1502
Copyright © 2007. Sociedad Española de Cardiología
¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?