ISSN: 1885-5857 Impact factor 2023 7.2
Vol. 57. Num. 1.
Pages 69-79 (January 2004)

Ionic Currents and Ventricular Fibrillation Dynamics

Corrientes iónicas y dinámica de la fibrilación ventricular

Javier MorenoaMark WarrenbJosé Jalifeb

Options

Ventricular fibrillation is the principal immediate cause of sudden cardiac death. Yet, in contrast to other arrhythmias, ventricular fibrillation is considered to be inaccessible to pharmacologic therapy because of its characteristic and apparently never-ending disarray of electrical waves that seem to propagate chaotically throughout the ventricles. Its prevention has historically been focused on the suppression of ventricular ectopy, with the idea of eliminating potential triggers of fibrillation, which from a clinical standpoint has proven to be detrimental. During the last decade, the application of the theory of wave propagation in non-linear excitable media to the study of cardiac fibrillation has led to a dramatic increase in our understanding of its mechanisms. It is now clear that fibrillation is generated and maintained by rotors that gyrate at exceedingly high frequencies. From such rotors emanate spiral waves of excitation that propagate throughout the myocardium in very complex ways. Among the most important factors that determine rotor dynamics are the electrophysiological properties of the ventricular cells, established by their underlying transmembrane ionic currents. Thus, in recent years, studies have focused on the roles played by specific ionic mechanisms and their modulation by antiarrhythmic drugs in ventricular fibrillation dynamics. This review article summarizes the main findings of such studies, which pave the way for a better understanding of fibrillation, and for the development of new pharmacological approaches that aim to prevent rotor formation and maintenance rather than to suppress the triggering ectopic event.

Keywords

Fibrillation
Ions
Antiarrhythmics agents
Este artículo solo puede leerse en pdf
Bibliography
[1]
Lal R, Chapman PD, Naccarelli GV, Schechtman KB, Rinkenberger RL, Troup PJ, et al..
Flecainide in the treatment of nonsustained ventricular tachycardia..
Ann Intern Med, (1986), 105 pp. 493-8
[2]
Salerno DM, Gillingham KJ, Berry DA, Hodges M..
A comparison of antiarrhythmic drugs for the suppression of ventricular ectopic depolarizations: a meta-analysis..
Am Heart J, (1990), 120 pp. 340-53
[3]
Cairns JA, Connolly SJ, Roberts R, Gent M..
Randomised trial of outcome after myocardial infarction in patients with frequent or repetitive ventricular premature depolarisations: CAMIAT. Canadian Amiodarone Myocardial Infarction Arrhythmia Trial Investigators..
Lancet, (1997), 349 pp. 675-82
[4]
Julian DG, Camm AJ, Frangin G, Janse MJ, Munoz A, Schwartz PJ, et al..
Randomised trial of effect of amiodarone on mortality in patients with left-ventricular dysfunction after recent myocardial infarction: EMIAT. European Myocardial Infarct Amiodarone Trial Investigators..
Lancet, (1997), 349 pp. 667-74
[5]
Kober L, Bloch Thomsen PE, Moller M, Torp-Pedersen C, Carlsen J, Sandoe E, et al..
Effect of dofetilide in patients with recent myocardial infarction and left-ventricular dysfunction: a randomised trial..
Lancet, (2000), 356 pp. 2052-8
[6]
Ruskin JN..
The cardiac arrhythmia suppression trial (CAST)..
N Engl J Med, (1989), 321 pp. 386-8
[7]
Morganroth J, Goin JE..
Quinidine-related mortality in the short-to-medium-term treatment of ventricular arrhythmias. A meta-analysis..
Circulation, (1991), 84 pp. 1977-83
[8]
Berntsen RF, Rasmussen K..
Lidocaine to prevent ventricular fibrillation in the prehospital phase of suspected acute myocardial infarction: the North-Norwegian Lidocaine Intervention Trial..
Am Heart J, (1992), 124 pp. 1478-83
[9]
Waldo AL, Camm AJ, DeRuyter H, Friedman PL, MacNeil DJ, Pauls JF, et al..
Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. The SWORD Investigators. Survival With Oral d-Sotalol..
Lancet, (1996), 348 pp. 7-12
[10]
The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial..
Lancet, (1999), 353 pp. 9-13
[11]
Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF)..
Lancet, (1999), 353 pp. 2001-7
[12]
Pachón IM, Jalife J..
Nuevos conceptos sobre los mecanismos de la fibrilación ventricular..
Rev Esp Cardiol, (2001), 54 pp. 373-82
[13]
Davidenko JM, Pertsov AV, Salomonsz R, Baxter W, Jalife J..
Stationary and drifting spiral waves of excitation in isolated cardiac muscle..
Nature, (1992), 355 pp. 349-51
[14]
Pertsov AM, Davidenko JM, Salomonsz R, Baxter WT, Jalife J..
Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle..
Circ Res, (1993), 72 pp. 631-50
[15]
Gray RA, Jalife J, Panfilov AV, Baxter WT, Cabo C, Davidenko JM, et al..
Mechanisms of cardiac fibrillation..
Science, (1995), 270 pp. 1222-3
[16]
Winfree AT..
Stably rotating patterns of reaction and diffusion..
Prog Theor Chem, (1978), 4 pp. 1-51
[17]
Winfree AT..
When time breaks down. New Jersey: Princeton Univ Press.
When time breaks down. New Jersey: Princeton Univ Press, (1987), pp. 108-10
[18]
Zykov VS..
Analytic evaluation of the relationship between the speed of a wave of excitation in a two-dimensional excitable medium and the curvature of its front..
Biofizika, (1980), 25 pp. 888-92
[19]
Pertsov AM, Khramov RN, Panfilov AV..
Sharp increase in refractory period induced by oxidation suppression in Fitz Hugh-Nagumo model. New mechanism of antiarrhythmic drug action..
Biofizika, (1981), 26 pp. 1077-81
[20]
Chorro FJ, Millet J, Ferrero A, Cebrian A, Canoves J, Martínez A..
Efecto del estiramiento miocárdico sobre las frecuencias de activación determinadas mediante análisis espectral durante la fibrilación ventricular..
Rev Esp Cardiol, (2002), 55 pp. 1143-50
[21]
Beaumont J, Davidenko N, Davidenko JM, Jalife J..
Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core..
[22]
Beaumont J, Jalife J..
Rotors and spiral waves in two dimensions. En: Zipes DP, Jalife J, editors. Cardiac electrophysiology from cell to bedside. Philadelphia: Saunders.
Rotors and spiral waves in two dimensions. En: Zipes DP, Jalife J, editors. Cardiac electrophysiology from cell to bedside. Philadelphia: Saunders, (2000), pp. 327-35
[23]
Moe GK..
On the multiple wavelet hypothesis of atrial fibrillation..
Arch Int Pharmacodyn Ther, (1962), 140 pp. 183-8
[24]
Karma A..
Electrical alternans and spiral wave breakup in cardiac tissue..
Chaos, (1994), 4 pp. 461-72
[25]
Garfinkel A, Kim YH, Voroshilovsky O, Qu Z, Kil JR, Lee MH, et al..
Preventing ventricular fibrillation by flattening cardiac restitution..
Proc Natl Acad Sci USA, (2000), 97 pp. 6061-6
[26]
Riccio ML, Koller ML, Gilmour RF..
Electrical restitution and spatiotemporal organization during ventricular fibrillation..
Circ Res, (1999), 84 pp. 955-63
[27]
Gray RA, Pertsov AM, Jalife J..
Spatial and temporal organization during cardiac fibrillation..
Nature, (1998), 392 pp. 75-8
[28]
Jalife J, Berenfeld O, Skanes A, Mandapati R..
Mechanisms of atrial fibrillation: mother rotors or multiple daughter wavelets, or both?.
J Cardiovasc Electrophysiol, (1998), 9 pp. S2-12
[29]
Weidmann S..
The electrical constants of Purkinje fibres..
J Physiol, (1952), 118 pp. 348-60
[30]
Mandapati R, Asano Y, Baxter WT, Gray R, Davidenko J, Jalife J..
Quantification of effects of global ischemia on dynamics of ventricular fibrillation in isolated rabbit heart..
Circulation, (1998), 98 pp. 1688-96
[31]
Coraboeuf E, Deroubaix E..
Shortening effect of tetrodotoxin on action potentials of the conducting system in the dog heart..
J Physiol, (1978), 280 pp. P24
[32]
Cabo C, Pertsov AM, Baxter WT, Davidenko JM, Gray RA, Jalife J..
Wave-front curvature as a cause of slow conduction and block in isolated cardiac muscle..
Circ Res, (1994), 75 pp. 1014-28
[33]
Krinsky VI, Efimov IR, Jalife J..
Vortices with linear cores in excitable media..
Proc R Soc Lond, (1992), 437 pp. 645-55
[34]
Kwan YY, Fan W, Hough D, Lee JJ, Fishbein MC, Karagueuzian HS, et al..
Effects of procainamide on wave-front dynamics during ventricular fibrillation in open-chest dogs..
Circulation, (1998), 97 pp. 1828-36
[35]
Starmer CF, Lastra AA, Nesterenko VV, Grant AO..
Proarrhythmic response to sodium channel blockade. Theoretical model and numerical experiments..
Circulation, (1991), 84 pp. 1364-77
[36]
Akiyama T..
Intracellular recording of in situ ventricular cells during ventricular fibrillation..
Am J Physiol, (1981), 240 pp. H465-71
[37]
Zhou X, Guse P, Wolf PD, Rollins DL, Smith WM, Ideker RE..
Existence of both fast and slow channel activity during the early stages of ventricular fibrillation..
Circ Res, (1992), 70 pp. 773-86
[38]
Duff HJ, Sheldon RS, Cannon NJ..
Tetrodotoxin: sodium channel specific anti-arrhythmic activity..
Cardiovasc Res, (1988), 22 pp. 800-7
[39]
Starmer CF, Lancaster AR, Lastra AA, Grant AO..
Cardiac instability amplified by use-dependent Na channel blockade..
Am J Physiol, (1992), 262 pp. H1305-10
[40]
Herre JM, Titus C, Oeff M, Eldar M, Franz MR, Griffin JC, et al..
Inefficacy and proarrhythmic effects of flecainide and encainide for sustained ventricular tachycardia and ventricular fibrillation..
Ann Intern Med, (1990), 113 pp. 671-6
[41]
Balke CW, Marban E, O'Rourke B..
Calcium channels: structure, function and regulation. En: Zipes DP, Jalife J, editors. Cardiac electrophysiology. From cell to bedside. Philadelphia: Saunders.
Calcium channels: structure, function and regulation. En: Zipes DP, Jalife J, editors. Cardiac electrophysiology. From cell to bedside. Philadelphia: Saunders, (2000), pp. 8-21
[42]
Noguchi K, Masumiya H, Takahashi K, Kaneko K, Higuchi S, Tanaka H, et al..
Comparative effects of gallopamil and verapamil on the mechanical and electrophysiological parameters of isolated guinea-pig myocardium..
Can J Physiol Pharmacol, (1997), 75 pp. 1316-21
[43]
Watanabe T, Gray RA, Mandapati R, Asano T, Jalife J..
Verapamil converts fibrillation into sustained monomorphic tachycardia in the isolated rabbit heart..
Pacing Clin Electrophysiol, (1997), 20 pp. 1136
[44]
Samie FH, Mandapati R, Gray RA, Watanabe Y, Zuur C, Beaumont J, et al..
A mechanism of transition from ventricular fibrillation to tachycardia: effect of calcium channel blockade on the dynamics of rotating waves..
Circ Res, (2000), 86 pp. 684-91
[45]
Choi BR, Nho W, Liu T, Salama G..
Life span of ventricular fibrillation frequencies..
Circ Res, (2002), 91 pp. 339-45
[46]
Wu TJ, Lin SF, Weiss JN, Ting CT, Chen PS..
Two types of ventricular fibrillation in isolated rabbit hearts: importance of excitability and action potential duration restitution..
Circulation, (2002), 106 pp. 1859-66
[47]
Wagner JA, Weisman HF, Levine JH, Snowman AM, Snyder SH..
Differential effects of amiodarone and desethylamiodarone on calcium antagonist receptors..
J Cardiovasc Pharmacol, (1990), 15 pp. 501-7
[48]
Omichi C, Zhou S, Lee MH, Naik A, Chang CM, Garfinkel A, et al..
Effects of amiodarone on wave front dynamics during ventricular fibrillation in isolated swine right ventricle..
Am J Physiol Heart Circ Physiol, (2002), 282 pp. H1063-70
[49]
Chorro FJ, Canoves J, Guerrero J, Mainar L, Sanchis J, Such L, et al..
Alteration of ventricular fibrillation by flecainide, verapamil, and sotalol: an experimental study..
Circulation, (2000), 101 pp. 1606-15
[50]
Andersen HR, Wiggers H, Knudsen LL, Simonsen I, Thomsen PE, Christiansen N..
Dofetilide reduces the incidence of ventricular fibrillation during acute myocardial ischaemia. A randomised study in pigs..
Cardiovasc Res, (1994), 28 pp. 1635-40
[51]
Xue Y, Yamada C, Chino D, Hashimoto K..
Effects of azimilide, a KV(r) and KV(s) blocker, on canine ventricular arrhythmia models..
Eur J Pharmacol, (1999), 376 pp. 27-35
[52]
Dorian P, Newman D..
Tedisamil increases coherence during ventricular fibrillation and decreases defibrillation energy requirements..
Cardiovasc Res, (1997), 33 pp. 485-94
[53]
Choi BR, LIu T, Salama G..
The distribution of refrachory periods influence the dynamics of ventricular fibrillation..
Circ Res, (2001), 88 pp. E49
[54]
Qi XQ, Newman D, Dorian P..
Azimilide decreases defibrillation voltage requirements and increases spatial organization during ventricular fibrillation..
J Interv Card Electrophysiol, (1999), 3 pp. 61-7
[55]
Uchida T, Yashima M, Gotoh M, Qu Z, Garfinkel A, Weiss JN, et al..
Mechanism of acceleration of functional reentry in the ventricle: effects of ATP-sensitive potassium channel opener..
Circulation, (1999), 99 pp. 704-12
[56]
Chi L, Uprichard AC, Lucchesi BR..
Profibrillatory actions of pinacidil in a conscious canine model of sudden coronary death..
J Cardiovasc Pharmacol, (1990), 15 pp. 452-64
[57]
Robert E, Delye B, Aya G, Peray P, Juan JM, Sassine A, et al..
Comparison of proarrhythmogenic effects of two potassium channel openers, levcromakalim and nicorandil: a high-resolution mapping study on rabbit heart..
J Cardiovasc Pharmacol, (1997), 29 pp. 109-18
[58]
Pertsov AM, Panfilov AV, Medvedeva FU..
Instabilities of autowaves in excitable media associated with critical curvature phenomena..
Biofizika, (1983), 28 pp. 100-2
[59]
Nichols CG, Lopatin AN..
Inward rectifier potassium channels..
Annu Rev Physiol, (1997), 59 pp. 171-91
[60]
Yang J, Jan YN, Jan LY..
Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel..
Neuron, (1995), 14 pp. 1047-54
[61]
Samie FH, Berenfeld O, Anumonwo J, Mironov SF, Udassi S, Beaumont J, et al..
Rectification of the background potassium current: a determinant of rotor dynamics in ventricular fibrillation..
Circ Res, (2001), 89 pp. 1216-23
[62]
Warren M, Guha PK, Berenfeld O, Zaitsev A, Anumonwo JM.B, Dhamoon AS, et al..
Blockade of the inward rectifying potassium current terminates ventricular fibrillation in the guinea pig heart..
J Cardiovasc Electrophysiol, (2003), 14 pp. 621-31
[63]
Dhamoon AS, Bagwe S, Guha P, Anumonwo JM, Taffet SM, Jalife J..
Differential expression and whole-cell current rectification profiles of guinea pig Kir2.x channels..
Biophys J, (2002), 82 pp. 587a
[64]
Kubo Y, Baldwin TJ, Jan YN, Jan LY..
Primary structure and functional expression of a mouse inward rectifier potassium channel..
Nature, (1993), 362 pp. 127-33
[65]
Dorian P, Penkoske PA, Witkowski FX..
Order in disorder: effect of barium on ventricular fibrillation..
Can J Cardiol, (1996), 12 pp. 399-406
[66]
Kudenchuk PJ, Cobb LA, Copass MK, Cummins RO, Doherty AM, Fahrenbruch CE, et al..
Amiodarone for resuscitation after out-of-hospital cardiac arrest due to ventricular fibrillation..
N Engl J Med, (1999), 341 pp. 871-8
[67]
Ramírez CJ, Rodríguez DA, Velasco VM, Rosas F..
Distrofia miotónica y taquicardia ventricular por reentrada rama-rama..
Rev Esp Cardiol, (2002), 55 pp. 1093-7
[68]
Zaitsev AV, Guha PK, Sarmast F, Kolli A, Berenfeld O, Pertsov AM, et al..
Wavebreak formation during ventricular fibrillation in the isolated, regionally ischemic pig heart..
[69]
Fuster V, Ryden LE, Asinger RW, Cannom DS, Crijns HJ, Frye RL, et al..
ACC/AHA/ESC guidelines for the management of patients with atrial fibrillation..
J Am Coll Cardiol, (2001), 38 pp. 1231-66
[70]
Atarashi H, Inoue H, Hiejima K, Hayakawa H..
Conversion of recent-onset atrial fibrillation by a single oral dose of pilsicainide. The PSTAF Investigators..
Am J Cardiol, (1996), 78 pp. 694-7
Are you a healthcare professional authorized to prescribe or dispense medications?