Cartas científicas

La presencia de rafe en la válvula aórtica bicúspide normofuncionante no altera la hemodinámica ni la rigidez aórtica

Raphe in bicuspid aortic valve without significant aortic valve disease is unrelated to aortic hemodynamics and stiffness

Sr. Editor:

La válvula aórtica bicúspide (VAB) es una anomalía congénita que consiste en la fusión anatómica de 2 velos de la válvula aórtica. Este defecto se asocia con una alta prevalencia de una dilatación aórtica cuyo origen, ya sea genético o hemodinámico, es objeto de debate. El rafe —área de unión de 2 velos valvulares adyacentes suele producirse en la VAB y recientemente es de gran interés en la investigación clínica. En un amplio estudio multicéntrico, la presencia de rafe se asoció con un incremento de las tasas de cirugía aórtica¹. El rafe se ha relacionado con una mayor prevalencia de estenosis^{1,2} e insuficiencia¹ aórticas significativas. En la aortopatía bicúspide, a pesar de que ya se han descrito alteraciones del flujo aórtico relacionadas con la desregulación de la matriz extracelular, la degeneración fibrosa³ y la dilatación aórtica^{4,5}, no se ha establecido todavía el efecto que la presencia de rafe tiene en el flujo de la aorta ascendente. El objetivo del presente trabajo es comparar el patrón de flujo y la rigidez aórtica en una población con VAB, sin valvulopatía aórtica significativa y con presencia o ausencia de rafe.

Se incluyó una cohorte consecutiva y prospectiva de 87 adultos derivados a nuestra unidad de aorta para un estudio de resonancia magnética cardiaca (RMC). Todos tenían VAB normofuncionante (fracción de regurgitación \leq 10%, velocidad máxima aórtica < 2 m/s por RMC), donde el único rafe cubría más del 50% del velo valvular. Los criterios de exclusión fueron: presencia de trastornos hereditarios del tejido conectivo, de cardiopatía congénita asociada con la VAB y contraindicación para la RMC. Debido a que la presencia de rafe se valoró por RMC, no se pudo descartar la presencia de otros rafes menores. El comité de ética local dio su aprobación al estudio y se obtuvo el consentimiento informado de todos los participantes.

Para evaluar la morfología de la VAB y el diámetro aórtico, se utilizaron imágenes de cine en secuencias de precesión libre en estado estacionario de equilibrio, o bSSFP. Para cuantificar el flujo

Figura 1. Parámetros de flujo. A: desplazamiento normalizado. B: flujo rotacional en el plano (IRF, por sus siglas en inglés). C: razón de flujo retrógrado en sístole (SFRR, por sus siglas en inglés) en 8 planos entre la unión sinotubular (plano 1) y el tronco braquiocefálico (plano 8) de los pacientes con válvula aórtica bicúspide (VAB) en presencia (verde) y ausencia (azul) de rafe. Las columnas muestran los centiles 5 y 95. Bloque inferior: tensión de cizallamiento parietal en plano axial (izquierda) y circunferencial (circ., derecha) (WSS, por sus siglas en inglés [N/m²]) de los pacientes con válvula aórtica bicúspide en presencia y ausencia de rafe. A: anterior; I: izquierda; P: posterior; D: derecha. Esta figura se muestra a todo color solo en la versión electrónica del artículo.

https://doi.org/10.1016/j.recesp.2019.06.018

0300-8932/© 2019 Sociedad Española de Cardiología. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.

y la rigidez de la aorta ascendente, se utilizó RMC de flujo tetradimensional (4 D); una RMC 4 D con secuencia de contraste de fase y sincronización electrocardiográfica retrospectiva en respiración libre. Para la RMC de flujo 4 D, se utilizó un conjunto muy pequeño de proyecciones isotrópicas, con una resolución espacial isotrópica de 2,5 mm, una resolución temporal de 26,9 \pm 2,4 ms y una codificación de velocidad (VENC) de 200 cm/s⁴. El tiempo de adquisición promedio fue de 10 min y no se administró contraste intravenoso.

Los modelos geométricos tridimensionales de la aorta se reconstruyeron de manera semiautomática a partir de la angiorresonancia magnética tridimensional por contraste de fase, y estos mismos modelos se emplearon para extraer los datos de fluio 4 D. Se establecieron 8 planos de análisis a lo largo de la aorta ascendente, distribuidos de manera equidistante entre la unión sinotubular y el tronco braquiocefálico. Por cada corte, se calcularon varios parámetros, clásicos, descriptores de la hemodinámica aórtica: el desplazamiento normalizado de flujo, que es un marcador de la asimetría del flujo; el flujo rotacional en el plano (inplane rotational flow [IRF]), que caracteriza su comportamiento rotacional, y la razón de flujo retrógrado: anterógrado en sístole (systolic flow reversal ratio [SFRR]), que cuantifica la intensidad de los vórtices⁴. Además, se obtuvieron los mapas de la tensión de cizallamiento parietal (wall shear stress [WSS]) en los planos axial y circunferencial en el pico sistólico³, así como la velocidad de la onda del pulso de la aorta ascendente y descendente (pulse wave velocity [PWV]), que cuantifica la rigidez aórtica regional^{4,6}. El análisis estadístico se realizó con SPSS versión 21.0 (IBM Corporation; Armonk, Nueva York, Estados Unidos). Las variables continuas entre los grupos con y sin rafe se compararon mediante la prueba de la t de Student cuando seguían una distribución normal y con la prueba de la U de Mann-Whitney en caso contrario. Las variables categóricas se compararon mediante la prueba de la χ^2 . Se consideró indicativo de significación estadística un valor de p bilateral < 0,05.

La mayoría de los pacientes con VAB presentaban rafe (54/87, 62%). Estos pacientes con y sin rafe no mostraron diferencias en cuanto a la edad (47 ± 13 y 51 ± 15 años respectivamente; p = 0,436), el sexo (el 63 frente al 52% de varones; p = 0,293), el área de superficie corporal (1,83 \pm 0,9 y 1,78 \pm 0,23 m²; p = 0,411), la fracción de eyección $(un 61\% \pm 8\% \text{ y un } 60\% \pm 7\%; \text{ p} = 0,436)$, los diámetros máximos de la aorta ascendente (40,2 \pm 7,6 y 41,0 \pm 7,3 mm; p = 0,713) y de la raíz aórtica ($35,9 \pm 4,5$ y $35,9 \pm 4,8$ mm; p = 0,823), o en las prevalencias de hipertensión (el 75 y el 64%; p = 0,262) y de fenotipo de fusión de las cúspides izquierda y derecha (el 81 y el 70%; p = 0,256). Por otro lado, no se hallaron diferencias estadísticamente significativas al comparar a los pacientes con VAB con y sin rafe respecto a la velocidad de la onda de pulso de la aorta ascendente $(4,2 \pm 2,6)$ frente a $3,3 \pm 1,1$ m/s; p = 0,170) y descendiente (11,2 \pm 5,0 frente a 10,7 \pm 4,8 m/s; p = 0,765). Tampoco se encontraron diferencias entre los grupos con respecto a las variables hemodinámicas calculadas en ninguno de los 8 planos de análisis, entre ellas: el desplazamiento normalizado, el flujo rotacional en el plano y la razón retrógrado:anterógrado del flujo sistólico (figura 1A, B y C respectivamente) ni con respecto a los mapas vectoriales de tensión de cizallamiento parietal en sus componentes axial y circunferencial (figura 1, bloque inferior).

Para concluir, en los pacientes con VAB normofuncionante y monofusión > 50% del velo valvular, la presencia de rafe evaluada a partir de secuencias de cine de CRM no se correlacionó con el grado de dilatación, los patrones de flujo de la aorta ascendente o la

rigidez aórtica local. En consecuencia, esta característica de la válvula aórtica no debería implicar un abordaje clínico distinto del establecido en función de su morfotipo valvular y la gravedad tanto de la valvulopatía como de la dilatación aórtica.

Agradecimientos

Agradecemos a Augusto Sao Avilés su ayuda durante el análisis estadístico y a Christine O'Hara por la revisión del texto en su versión inglesa.

FINANCIACIÓN

El presente estudio ha sido financiado por el Instituto de Salud Carlos III (PI17/00381), La Marató de TV3 (20151330), el Ministerio de Economía y Competitividad a través del programa Retos-Colaboración 2016 (RTC-2016-5152-1), la Beca Philips de la Societat Catalana de Cardiologia 2017 y el CIBERCV.

A. Guala ha recibido financiación del Séptimo Programa Marco de la Unión Europea FP7/Personas (Acuerdo de subvención 267128).

Andrea Guala^{a,*}, Lydia Dux-Santoy^a, Gisela Teixido-Tura^a, Kevin M. Johnson^b, Arturo Evangelista^a y José Rodríguez-Palomares^a

 ^aServicio de Cardiología, Hospital Universitari Vall d'Hebron, CIBERCV, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, España
^bDepartments of Medical Physics & Radiology, University of Wisconsin, Madison, Wisconsin, Estados Unidos

* Autor para correspondencia:

Correo electrónico: andrea.guala@yahoo.com (A. Guala).

On-line el 6 de noviembre de 2019

BIBLIOGRAFÍA

- 1. Kong WK, Delgado V, Poh KK, et al. Prognostic Implications of Raphe in Bicuspid Aortic Valve Anatomy. *JAMA Cardiol.* 2017;2:285–292.
- Evangelista A, Gallego P, Calvo-Iglesias F, et al. Anatomical and clinical predictors of valve dysfunction and aortic dilation in bicuspid aortic valve disease. *Heart.* 2018;104:566–573.
- Guzzardi DG, Barker AJ, Van Ooij P, et al. Valve-Related Hemodynamics Mediate Human Bicuspid Aortopathy: Insights From Wall Shear Stress Mapping. J Am Coll Cardiol. 2015;66:892–900.
- **4.** Rodríguez-Palomares JF, Dux-Santoy L, Guala A, et al. Aortic flow patterns and wall shear stress maps by 4D-flow cardiovascular magnetic resonance in the assessment of aortic dilatation in bicuspid aortic valve disease. *J Cardiovasc Magn Reson.* 2018;20:28.
- Dux-Santoy L, Guala A, Teixido-Tura G, et al. Increased rotational flow in the proximal aortic arch is associated with its dilation in bicuspid aortic valve disease. *Eur Heart J Cardiovasc Imaging.* 2019. http://dx.doi.org/10.1093/ehjci/jez046.
- Guala A, Rodríguez-Palomares JF, Dux-Santoy L, et al. Influence of Aortic Dilation on the Regional Aortic Stiffness of Bicuspid Aortic Valve Assessed by 4-Dimensional Flow Cardiac Magnetic Resonance: Comparison With Marfan Syndrome and Degenerative Aortic Aneurysm. JACC Cardiovasc Imaging. 2019;12:1020–1029.

https://doi.org/10.1016/j.recesp.2019.06.018

0300-8932/

© 2019 Sociedad Española de Cardiología. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.