Caracterización de los efectos tisulares en los segmentos adyacentes a los *stents* liberadores de paclitaxel según el análisis de datos de radiofrecuencia procedentes de ecocardiografía intravascular seriada: estudio BETAX (BEside TAXus)

Héctor M. García-García, Nieves Gonzalo, Shuzou Tanimoto, Emanuele Meliga, Peter de Jaegere Y Patrick W. Serruys

Thoraxcenter. Erasmus MC. Rotterdam. Países Bajos.

Introducción y objetivos. En la actualidad se desconoce el efecto de paclitaxel en la composición tisular en los segmentos adyacentes (bordes) del *stent* Taxus[®]. El objetivo de este estudio fue investigar in vivo los cambios temporales que se producen en los bordes del *stent* liberador de paclitaxel según un análisis de los datos de radiofrecuencia procedentes de ecografía intravascular (EIV).

Métodos. En total participaron 24 pacientes (26 segmentos con *stents* liberadores de paclitaxel). Se obtuvieron imágenes con EIV de los 5 mm proximales y los 5 mm distales de los bordes del *stent* transcurridos 6 meses del implante. Para realizar un análisis posterior, los segmentos proximales y distales se fraccionaron en cinco subsegmentos de 1 mm cada uno.

Resultados. En los primeros dos subsegmentos adyacentes al *stent* del borde proximal, la pared del vaso crece para compensar el crecimiento de la placa sin que ello afecte a la luz, mientras en los siguientes 3 subsegmentos se observó una sobrecompensación (la pared del vaso aumentó más que el tamaño de la placa). Por lo tanto, aumentó el tamaño luminal. En el borde distal, se observó sobrecompensación en todos los subsegmentos, seguida de un aumento del tamaño luminal. En general, el crecimiento proximal y distal se basó en un aumento de la placa fibrolipídica (p < 0,001 y p < 0,001 respectivamente), con una disminución del núcleo necrótico (p = 0,014 y p < 0,001 y p < 0,001 respectivamente).

Conclusiones. Se observó un remodelado vascular expansivo y seriado en los bordes proximal y distal del *stent,* para acomodar un crecimiento tisular principalmente debido al aumento del tejido fibrolipídico.

VÉASE EDITORIAL EN PÁGS. 1001-6

Correspondencia: Dr. P.W. Serruys.

Thoraxcenter, Bd583a.

Dr. Molewaterplein 40. 3015-GD. Rotterdam. Países Bajos. Correo electrónico: p.w.j.c.serruys@erasmusmc.nl

Recibido el 30 de noviembre de 2007. Aceptado para su publicación el 13 de marzo de 2008. Palabras clave: Reestenosis. Técnicas de imagen. Stents farmacoactivos. Enfermedad coronaria.

Characterization of Edge Effects With Paclitaxel-Eluting Stents Using Serial Intravascular Ultrasound Radiofrequency Data Analysis: The BETAX (BEside TAXus) Study

Introduction and objectives. At present, the effect of paclitaxel on tissue structure at the edges of Taxus[®] stents is unknown. The objective of this study was to investigate in vivo the temporal changes occurring at the edges of paclitaxel-eluting stents using intravascular ultrasound radiofrequency (IVUS-RF) data analysis.

Methods. The study included 24 patients who had a total of 26 paclitaxel-eluting stented segments. In all patients, IVUS-RF imaging was performed 5 mm proximally and 5 mm distally to the stent edges 6 months after stent implantation. For subsequent analysis, proximal and distal segments were divided into five 1-mm subsegments.

Results. In the first two subsegments adjacent to the proximal edge of the stent, the vessel wall had grown to compensate for plaque growth without affecting the vessel lumen, while in the remaining three subsegments there was overcompensation (i.e., the vessel wall increased to greater than the plaque size). Consequently, the lumen had increased in size. At the distal edge of the stent, overcompensation was observed in all five subsegments and the lumen had increased in size. In general, proximal and distal growth was due to an increase in fibrolipid plaque (P<.001 and P<.001, respectively) along with a decrease in the necrotic core (P=.014 and P<.001, respectively) and the presence of dense calcium (P<.001 and P<.001, respectively).

Conclusions. Serial expansive vascular remodeling was observed at proximal and distal stent edges. Remodeling occurred in response to tissue growth, which was mainly due to increased fibrofatty tissue.

Key words: Restenosis. Imaging. Drug-eluting stents. Coronary disease.

Full English text available from: www.revespcardiol.org

ABREVIATURAS

AT: área transversal. DRF: datos de radiofrecuencia. EIV: ecocardiografía intravascular.

INTRODUCCIÓN

El uso de *stents* ha sido uno de los grandes avances en el tratamiento de pacientes con coronariopatía¹. Además de sus muchas ventajas, los *stents* presentan algunos problemas, como la aparición de reestenosis y la trombosis²⁻⁹. Tras la implantación de un *stent*, la respuesta vascular (reestenosis y remodelado) a la lesión va encaminada a cicatrizar la herida y se caracteriza principalmente por un incremento de las células de músculo liso y de matriz extracelular¹⁰.

En el estudio Taxus II se observó una reducción significativa del tamaño luminal en el borde proximal, tanto con *stents* metálicos como con *stents* liberadores de paclitaxel, mientras que en el borde distal sólo se observó reducción en el grupo con *stents* metálicos. Esto se debió principalmente a un aumento del tamaño de la placa que no fue plenamente compensado por el remodelado de la pared del vaso¹¹.

En la actualidad, el análisis espectral de los datos de radiofrecuencia (DRF) procedentes de la ecografía intravascular (EIV)^{12,13} se ha convertido en una herramienta para evaluar la composición tisular de las arterias coronarias. De esta manera pueden analizarse no sólo cambios geométricos seriados, sino también su composición.

Sin embargo, en los vasos con un *stent* implantado, el análisis sólo puede realizarse en los segmentos adyacentes (bordes) del *stent*, ya que no es posible analizar con esta técnica el área real ni sus alrededores por las siguientes razones: *a*) los *struts* del *stent* se clasifican erróneamente como «calcio denso»; *b*) el análisis de DRF de EIV no está validado de forma adecuada en este contexto, y *c*) los *struts* superficiales del *stent* pueden interferir en la retrodispersión (*backscattering*) del tejido ubicado detrás de ellos.

Formulamos la hipótesis de que el tejido implicado en el aumento de la placa en los bordes del *stent*, según la evaluación de los DRF de EIV, es principalmente un tejido fibrolipídico, descrito de forma general como haces de fibra colágena poco compactados con regiones de depósito lipídico y matriz extracelular sin áreas necróticas¹⁴.

Por lo tanto, buscamos in vivo posibles cambios geométricos con el transcurso del tiempo y modificaciones en la composición tisular en el borde del *stent* liberador de paclitaxel de acuerdo con el análisis de los DRF de EIV.

MÉTODOS

Selección de pacientes

El estudio BETAX (BEside TAXus[®]) lo constituye una cohorte longitudinal y prospectiva de pacientes no consecutivos sometidos a intervención coronaria por indicación clínica y que fueron tratados con *stent* Taxus[®] (Taxus[®] Express^{2TM}; Boston Corporation, Natick, Massachusetts, Estados Unidos). Sólo los pacientes que dieron su consentimiento informado por escrito fueron incluidos en el estudio. Participaron pacientes con angina estable y con síndromes coronarios agudos. Se consideraron síndromes coronarios agudos la angina inestable, el infarto de miocardio sin elevación del segmento ST y el infarto de miocardio con elevación del segmento ST. La captura de imágenes con EIV se realizó transcurridos 6 meses de la implantación del *stent*. Nuestro comité de ética local aprobó el protocolo.

Adquisición y análisis de DRF de EIV

Los detalles referentes a la validación de la técnica en segmentos coronarios humanos explantados y tras aterectomía in vivo se han publicado con anterioridad¹²⁻¹⁴. De forma breve, se utiliza el análisis espectral de los DRF de la EIV para elaborar mapas tisulares que se correlacionan con un espectro específico de la señal de radiofrecuencia y a los que se asignan códigos de color (fibroso [verde], fibrolipídico [verdoso-amarillo], núcleo necrótico [rojo] y calcio denso [blanco])^{12,13}.

Los DRF-EIV se obtuvieron con un sistema de retroceso motorizado a velocidad constante (*continous pullback*) (Eagle-EyeTM 20 MHz Volcano Therapeutics, Rancho Cordova, California, Estados Unidos) mediante una consola específica de EIV (Volcano Therapeutics, Rancho Cordova, California, Estados Unidos). Las grabaciones se almacenaron en un DVD y se enviaron a Corelab (Erasmus Medical Center/Cardialysis, Rotterdam, Países Bajos) para su análisis.

Los segmentos proximales de 5 mm y distales de 5 mm adyacentes al *stent* se fraccionaron posteriormente en cinco subsegmentos de 1 mm (fig. 1).

La tasa de muestreo durante el *pullback* se calibró al punto máximo de la onda R, por lo que depende de la frecuencia cardiaca. Por ejemplo, durante una frecuencia cardiaca constante de 60 lat/min, los datos se recogen cada 0,5 mm.

Se obtuvieron datos geométricos y de composición tisular para cada área transversal (AT) y se expresaron como áreas medias y porcentajes para cada componente DRF-EIV.

Análisis estadístico

Las variables discretas se presentan como recuentos y porcentajes. Las variables continuas se presentan

Fig. 1. A: cambios de área en las mediciones geométricas de las zonas proximal y distal de 5 mm del *stent* Taxus. B y C: cambios temporales absolutos y relativos en la composición de la placa. AT: área transversal.

como medias \pm desviación estándar. Un valor p (bilateral) < 0,05 determinó la significación estadística. Se comprobaron los supuestos de normalidad después de una transformación basada en p > 0,20 en la prueba de Kolmogorov-Smirnov y mediante una evaluación visual de los gráficos Q-Q de los residuos. En consecuencia, se realizó una transformación logarítmica de las variables con distribución asimétrica.

La comparación entre las determinaciones basales y las del seguimiento se realizó mediante una prueba de la t de Student para datos apareados.

Los análisis estadísticos se realizaron con el *software* SPSS versión 11.5.

RESULTADOS

En total, se incluyó en el estudio a 30 pacientes, pero en último término sólo 24 (26 segmentos con *stents*) fueron analizados, dado que 2 pacientes rechazaron el seguimiento angiográfico y la calidad de la imagen EIV fue deficiente en otros 4 pacientes (por velocidad de retirada no constante y artefactos en la EIV). Las características basales de los pacientes participantes se muestran en la tabla 1. La media de edad era 57,6 ± 11,2 años, la mayoría eran varones (75%) y el 66% de los pacientes presentaba angina estable. En el 46,2% de los casos se estudió la arteria coronaria descendente anterior; en el 26,9%, la arteria circunfleja, y en el 26,9%, la coronaria derecha. El número medio de *stents* por paciente fue 1,5 ± 0,7. Hasta el momento no se ha observado ningún caso de trombosis del *stent*.

Hallazgos DRF-EIV. Cambios en los parámetros geométricos y de composición dentro de los segmentos proximales y distales y entre ellos desde el inicio del estudio al seguimiento

Al inicio del estudio, el AT media del vaso (16,5 ± 4,9 frente a 11,5 ± 4 mm²; p < 0,001), de la placa (7,7 ± 3,6 frente a 5,3 ± 2,7 mm²; p < 0,001) y luminal (8,8 ± 2,6 frente a 6,2 ± 1,7 mm²; p < 0,001) en todo el segmento de 5 mm del borde proximal eran mayores que en el segmento distal. Lo mismo sucede en la exploración de seguimiento para las mediciones de AT media del vaso (17,5 ± 5,9 frente a 12,8 ± 4 mm²; p < 0,001), de la placa (8,2 ± 4,4 frente a 5,1 ± 2,6 mm²;

TABLA 1. Características demográficas,farmacológicas y del procedimiento (n = 24)		ırga placa ım²)	± 11,9 ± 12,6 ,95	t ± 10 ± 10,7 001	038	,001	
Edad (años)	57,6 ± 11,2		l Ca de la (m	45,4 45,1 0	43,5 40,2 0,1	0,0	0 >
Varones	$20,1 \pm 3,0$ 18 (75)		ersa ca	0 [°] 4	2.9	-	-
Hipertensión	10 (41.7)		ansv n pla	,54 ± 3	+ 2 + 2 69	,00	0,0
Diabetes mellitus	6 (25)		a tra le la (m	7,7 0,2	ັ , ດ	0 ~	0 ~
Hipercolesterolemia	10 (41,7)		Áre				
Fumador actual	4 (16,7)		a				
Antecedentes cardiacos previos	5 (20,8)		svers al	3 3,6	1,7	10	10
CABG previa	0	Ē	rans mm ³	, 04 , 04	+ 00	0,0	0,0
SCA previa	3 (12,5)	Ξ	lu lu	8° 6° 0	0,2	V	V
Antecedentes familiares de coronariopatía	11 (45,8)	le [Ár				
Presentación clínica		0	ersa	တွတ္	~ ~		
Angina estable	16 (66,6)	int	nsve /aso m²)	3 + + 3 + 5 + 4	63 + 7	001	001
SCA Madianai én	9 (37,4)	Ĕ	del v (mi	3,5 7,5 0,0	1,5 0,0	< 0,	< 0,
		eg	Årea	<u><u></u></u>		v	v
Aspirina Inicia del estudio	17 (70.0)	s	~	22	່ດ		
filicio del estudio	17(70,0)	ő)))) (iicc	13, 13, 02	: 16 : 12 001	33	001
Seguimento a los 6 meses	24 (100)	Ď	Núc ecrć (%	7 + ,2 + 0,0	τ, ^ω , Ο	0,2	, Ú
lnicio del estudio	5 (20.8)	n t	-	- 4	¹⁸		v
Sequimiento a los 6 meses	24 (100)	e s	_	60	22		
Bloqueadores beta	24 (100)	ö	leo itico	1,0,0	0,0 0,0	J 01	01
Inicio del estudio	7 (29 2)	itri	Núc ecró (mn	0,0 ± ± 0,0	0,0 0,0 0,0	0,0	0,0
Sequimiento a los 6 meses	19 (79.2)	mé	=	0,7 0,6	0,5	V	V
IECA		eo		04	. 		
Inicio del estudio	5 (20,8)	b s) (dic	11, 13, 01	9,3 13,	01	01
Seguimiento a los 6 meses	12 (50)	ğ	olip (%	7 ± 7 ± 0,0	, + ² 0,0	0,0	0,0
Antagonistas del calcio	. ,	da	fibr	× 19,11	13, 7	V	V
Inicio del estudio	3 (12,5)	۲ ۲	_	- 10	ω 4		
Seguimiento a los 6 meses	1 (4,2)	tua	dicc ²)	0,7 1,11	0,5,0,3;	5	5
Estatinas		<u>Li r</u>	ejid mm	+ + 0,0	+ # 0,0	0,0	0,0
Inicio del estudio	12 (50)	ja,	L rdif	0,52	,4, ∧	V	V
Seguimiento a los 6 meses	21 (87,5)	og					
Vasos estudiados (n = 26)	10 (10 0)	to 1	. 8	8 9 9	3,7	Ξ	E
DA	12 (46,2)	his	ejide rótic (%)	,49 ,49	,18 ,18	0,00	0,00
	7 (20,9)	Ľ.	₽₿	6,9 0	.7,8 53 (v	\sim
UD Tipo de procedimiento	7 (20,9)	ula		(1) (1)	ম		
Longitud del stent (mm)	166+41	sc		- 10 m	4,4,	Ξ	Ξ
Diámetro del stent (mm)	3 ± 0.41	ava	ejid róti nm²	,48	+ + 6	0,0	0,0
Predilatación con balón	11 (42.3)	ntra	тëс	5,6 2,8	тт ТТТ	v	v
Cociente longitud del balón/longitud del stent	0.97 ± 0.27	a.		ъ, с			
Presión del implante del <i>stent</i> (AT)	19,6 ± 3,24	afí	do cad	8,2 01,2	14,2 0,3	ŝ	01
CARC: injerte de derivación en erteria peroperia: CD: a	taria agroparia dara	gr	Teji Icifi %)	7 ⁺ 0,0	+ °°	Ő	0,0
cha: Cx: arteria circunfleia: DA: arteria descendente anter	ior: IECA: inhibidores	Se	8	° 2	- ω v		v
de la convertasa angiotensínica; IMC: índice de masa corporal; SCA: síndrome			က္တ	8 2			
Coronario agudo.		do cado	0,6 0,4 01	0,1 0,1	101	10	
		Š	Teji Icifi (mn	2 ⁺ 0,0	+ + 0, 0 + 0,	0,0	0,0
		llaı	ca	0,5 0,3	0,0 0,0	~	~
		isu				al, I	al, J
		n t				dist	dist
$p < 0.001$) y luminal (9.3 ± 3 trente a 7.7 ± 4 mm ² ; p < $\frac{10}{20}$					a	a	
0,001) (tabla 2).					ente	ente	
En los bordes proximales y distales, se observo un				ie	lio	l fre	l fre
remodelado vascular expansivo y seriado durante el				o stuc	stuc o	aro ima	ima
seguimiento, con un aumento significativo del AT me-				el e: ient	al el e ient	sstl rox	<u>e</u> ě
dia del vaso en toda la zona del segmento proximal (p \checkmark				o do	o d in dia in dia ino dia in dia ino dia in dia ino	le p le p	le p
= 0,031) y una tendencia al aumento en el segmento		BL		de nici-	ae nici segu	30rd 30rd	Sord
distal (p = 0,06).		TA		b C = C			о С С
		-		_			

Puesto que el AT de la placa apenas aumenta, este remodelado dio lugar a un aumento significativo del AT media luminal (tabla 2).

En cuanto a la composición tisular, el porcentaje de tejido calcificado al inicio del estudio era similar (el 10,7% ± 11,5% frente al 11% ± 14,2%; p = 0,80) en ambos segmentos, y lo mismo ocurre respecto al núcleo necrótico (el 17% ± 13,5% frente al 18,5% ± 16,5%; p = 0,23); por el contrario, el porcentaje de tejido fibroso (el 57,9% ± 19,3% frente al 47,8% ± 29,2%; p < 0,001) y fibrolipídico (el 11,7% ± 11,9% frente al 7% ± 9,3%; p < 0,001) es mayor en el segmento proximal.

Durante el seguimiento, se observó que todos los tipos tisulares eran más extensos en el segmento proximal respecto al distal: tejido calcificado (el 5,8% ± 8,2% frente al 3,3% ± 6,3%; p < 0,001), núcleo necrótico (el 14,2% ± 13,8% frente al 10,8% ± 12,6%; p < 0,001), tejido fibroso (el 56,9% ± 18,4% frente al 53% ± 28,7%; p < 0,001) y tejido fibrolipídico (el 18,7% ± 13,4% frente al 13,7% ± 13,1%; p < 0,001) (tabla 2).

En general, el tejido fibrolipídico mostró un incremento significativo en los segmentos proximales y distales, mientras que el tejido calcificado y el núcleo necrótico parecieron disminuir con el tiempo. El tejido fibroso no mostró cambios significativos con el transcurso del tiempo (tabla 2).

Análisis subsegmentario de los cambios longitudinales acaecidos en los segmentos de 5 mm de los bordes proximales y distales

La diferencia absoluta media del AT del vaso (seguimiento - inicio del estudio) fue positiva en todos los segmentos proximales y distales; esto iba acompañado de una diferencia absoluta media positiva en el AT luminal; el incremento más destacado del AT de la placa (aunque no significativo) se observó en los primeros tres subsegmentos proximales (fig. 1). En particular, en los primeros 2 mm del borde proximal, la pared del vaso creció para compensar el crecimiento de placa (subsegmento proximal 1 mm, Δ +0,52 y Δ +0,54 mm²; subsegmento proximal 2 mm, Δ +0,65 y Δ +0,58 mm²; cambios en el área del vaso y cambios en el área de la placa respectivamente) sin que el tamaño luminal se viese afectado (subsegmento proximal 1 mm, Δ -0,02 mm²; subsegmento proximal 2 mm, Δ +0,07 mm² en el cambio del área luminal), mientras en los 3 subsegmentos siguientes se observó sobrecompensación, puesto que la pared del vaso creció más que la placa (subsegmento proximal 3 mm, Δ +1,98 y Δ +1,18 mm²; subsegmento proximal 4 mm, Δ +1,32 y Δ +0,12 mm²; subsegmento proximal 5 mm, Δ +0,54 y Δ +0,14 en los cambios en el área del vaso y en los cambios en el área de la placa, respectivamente), lo que resulta en un aumento del tamaño luminal (subsegmento proximal 3 mm, Δ +0,81 mm²; subsegmento proximal 4 mm, Δ +1,21 mm², y subsegmento proximal 5 mm, Δ +0,69 mm²). En el borde distal, la sobrecompensación se observó en los cinco subsegmentos, dando lugar a un aumento del tamaño luminal (subsegmento distal 1 mm, Δ +0,88; Δ +0,23 y Δ +1,35 mm²; subsegmento distal 2 mm, Δ +0,67; Δ +0,04 y Δ +1,24 mm²; subsegmento distal 3 mm, Δ +0,17; Δ -0,63 y Δ +1,72 mm²; subsegmento distal 4 mm, Δ +0,51; Δ -0,36 y Δ +1,42 mm²; subsegmento distal 5 mm, Δ +0,63; Δ -0,10 y Δ +1,61 mm² en cambios en el área del vaso, la placa y el lumen respectivamente).

A los 6 meses de seguimiento, el porcentaje de tejido fibrolipídico se incrementó en todos los subsegmentos, aunque el tejido fibroso mostró un comportamiento más heterogéneo, con el tejido calcificado y el núcleo necrótico disminuido en los diez subsegmentos analizados (fig. 1).

DISCUSIÓN

Los hallazgos más relevantes de este estudio fueron los siguientes: *a*) en el borde proximal y distal, se observaron remodelados vasculares expansivos de forma seriada, con un aumento del área media del vaso y luminal en todo el borde desde el inicio del estudio al seguimiento; *b*) en los primeros tres subsegmentos adyacentes a la zona proximal del *stent* se observó el aumento más prominente del área media de la placa, lo que coincide con los resultados obtenidos en los estudios Taxus II y Taxus IV^{11,15}, y *c*) por lo general, se observó un aumento significativo del tejido fibrolipídico en los segmentos proximal y distal, mientras que el tejido calcificado y el núcleo necrótico se vieron reducidos con el transcurso del tiempo.

Los cambios seriados en la composición tisular pueden variar dependiendo de su ubicación (borde proximal o borde distal), las condiciones de la fuerza de cizallamiento¹⁶, las características morfológicas (grado de obstrucción) del segmento y la composición tisular presentadas al inicio del estudio. Por último, también influye el grado de lesión de las paredes del vaso después de la dilatación¹⁷. El proceso de respuesta a la lesión tras un implante de stent ha sido ampliamente descrito¹⁰ en estudios histológicos en modelos animales y humanos. La reestenosis es secundaria a la acumulación de células de músculo liso y matriz extracelular, que contiene proteoglucanos, ácido hialurónico y colágeno (tipos I y III). Dicha matriz extracelular modula el crecimiento neointimal y el remodelado¹⁰. El tipo tisular en DRF de EIV que se correlaciona con la matriz extracelular es el tejido fibrolipídico, que resultó ser uno de los que más aumentó en este estudio, y se observó también un remodelado positivo en ambos bordes del stent a los 6 meses. Se ha propuesto el remodelado seriado como el mejor enfoque para evaluar los cambios geométricos acontecidos en la pared del vaso¹⁸. En este sentido, otros estudios previos con el

stent Taxus[®] han descrito este fenómeno en los bordes. En particular, en el Taxus II¹¹ sólo se observó remodelado positivo en el borde distal tanto en el grupo con Taxus de liberación lenta como con el de liberación moderada, debido a un aumento del tamaño de la placa, pero apenas se produjeron cambios en el tamaño luminal. Por otra parte, en el Taxus IV¹⁵ no se observaron apenas modificaciones en el tamaño del vaso en el borde proximal, pero sí una tendencia hacia el remodelado negativo en el borde distal. Es difícil poner en perspectiva estos tres estudios, ya que todos ellos cuentan con un tamaño de muestra diferente, y los autores de Taxus IV admitieron un posible sesgo en la selección. Por lo tanto, aunque este estudio presenta una muestra pequeña, ha logrado una caracterización más completa de los cambios seriados.

En este estudio, no se implantó un stent en las zonas con considerables núcleos necróticos (borde proximal, $17\% \pm 13,5\%$; borde distal, $18,5\% \pm 16,5\%$); por otra parte, no se observó ninguna trombosis debida a los stents en esta pequeña cohorte de pacientes. Como mecanismos patológicos de la trombosis por stent se han propuesto la implantación de stents en placas con núcleos necróticos y prolapso tisular considerables, así como la perturbación de las placas en la proximidad del segmento¹⁹ arterial con stent²⁰. La técnica DRF-EIV es capaz de caracterizar el núcleo necrótico con gran sensibilidad y especificidad¹⁴ y además proporciona un análisis geométrico de cada marco, lo que permite evaluación combinada del núcleo necrótico y del tamaño de la placa. Por lo tanto, la captura de imágenes DRF-EIV antes de implantar un stent puede aportar datos sobre la extensión de la placa y del núcleo necrótico dentro y más allá del segmento donde se realizará el implante. Esta última evaluación es importante, ya que últimamente la implantación de stents se ha realizado de segmentos arteriales «normales» a «normales» en la angiografía; sin embargo, debe evitarse la perturbación de zonas adyacentes con abundancia de núcleos necróticos que en la angiografía aparecen como zonas «sin enfermedad». En efecto, se ha informado que la cobertura incompleta de las placas ateroscleróticas coronarias con stents farmacoactivos puede repercutir a largo plazo en los sucesos clínicos, especialmente en las placas con un núcleo necrótico considerable¹⁹. No obstante, en este estudio se observó una disminución del núcleo necrótico en ambos extremos durante el seguimiento. Queda por dilucidar si este hecho está relacionado con la presencia del stent en sí o incluso con el tipo de fármaco que libere.

Las limitaciones de este estudio son diversas. En primer lugar, la cohorte de pacientes es pequeña, pero ello se debe a la naturaleza exploratoria con la que se concibió el estudio, sin intención de establecer una hipótesis estadística formal. En segundo lugar, hubiera sido ideal estudiar los efectos de todo el segmento cubierto con *stent* además de los bordes; pero como ya mencionamos, no existe una validación de la caracterización tisular de los tejidos situados detrás de los puntales del *stent*, ya que éstos podrían interferir con el proceso de *backscattering* (retrodispersión) del tejido situado detrás. Para el seguimiento, 6 meses puede resultar un período relativamente corto para evaluar plenamente los cambios tisulares acaecidos en los bordes del *stent*, sobre todo si se tiene en cuenta que se aconseja un seguimiento angiográfico más largo para la mejor valoración de las respuestas vasculares en estas zonas.

CONCLUSIONES

Se observó un remodelado vascular expansivo y seriado en los bordes proximal y distal del *stent*, para acomodar un crecimiento tisular principalmente causado por un aumento del tejido fibrolipídico.

BIBLIOGRAFÍA

- Serruys PW, Kutryk MJ, Ong AT. Coronary-artery stents. N Engl J Med. 2006;354:483-95.
- McFadden EP, Stabile E, Regar E, Cheneau E, Ong AT, Kinnaird T, et al. Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet. 2004;364:1519-21.
- Spaulding C, Daemen J, Boersma E, Cutlip DE, Serruys PW. A pooled analysis of data comparing sirolimus-eluting stents with bare-metal stents. N Engl J Med. 2007;356:989-97.
- Stone GW, Moses JW, Ellis SG, Schofer J, Dawkins KD, Morice MC, et al. Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents. N Engl J Med. 2007;356:998-1008.
- Kastrati A, Mehilli J, Pache J, Kaiser C, Valgimigli M, Kelbaek H, et al. Analysis of 14 trials comparing sirolimus-eluting stents with bare-metal stents. N Engl J Med. 2007;356:1030-9.
- Lagerqvist B, James SK, Stenestrand U, Lindback J, Nilsson T, Wallentin L. Long-term outcomes with drug-eluting stents versus bare-metal stents in Sweden. N Engl J Med. 2007;356:1009-19.
- Mauri L, Hsieh WH, Massaro JM, Ho KK, D'Agostino R, Cutlip DE. Stent thrombosis in randomized clinical trials of drug-eluting stents. N Engl J Med. 2007;356:1020-9.
- Dibra A, Kastrati A, Mehilli J, Pache J, Schuhlen H, Von Beckerath N, et al. Paclitaxel-eluting or sirolimus-eluting stents to prevent restenosis in diabetic patients. N Engl J Med. 2005;353:663-70.
- Windecker S, Remondino A, Eberli FR, Juni P, Raber L, Wenaweser P, et al. Sirolimus-eluting and paclitaxel-eluting stents for coronary revascularization. N Engl J Med. 2005; 353:653-62.
- Farb A, Kolodgie FD, Hwang JY, Burke AP, Tefera K, Weber DK, et al. Extracellular matrix changes in stented human coronary arteries. Circulation. 2004;110:940-7.
- Serruys PW, Degertekin M, Tanabe K, Russell ME, Guagliumi G, Webb J, et al. Vascular responses at proximal and distal edges of paclitaxel-eluting stents: serial intravascular ultrasound analysis from the TAXUS II trial. Circulation. 2004;109:627-33.
- Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation. 2002; 106:2200-6.
- 13. Nasu K, Tsuchikane E, Katoh O, Vince DG, Virmani R, Surmely JF, et al. Accuracy of in vivo coronary plaque morphology

assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. J Am Coll Cardiol. 2006;47:2405-12.

- 14. Nair A MP, Kuban BD, Vince DG. Automated coronary plaque characterization with intravascular ultrasound backscatter: ex vivo validation. Eurointervention. 2007;3:113-30.
- 15. Weissman NJ, Koglin J, Cox DA, Hermiller J, O'Shaughnessy C, Mann JT, et al. Polymer-based paclitaxel-eluting stents reduce instent neointimal tissue proliferation: a serial volumetric intravascular ultrasound analysis from the TAXUS-IV trial. J Am Coll Cardiol. 2005;45:1201-5.
- Wentzel JJ, Gijsen FJ, Stergiopulos N, Serruys PW, Slager CJ, Krams R. Shear stress, vascular remodeling and neointimal formation. J Biomech. 2003;36:681-8.
- 17. Wilcox JN, Okamoto EI, Nakahara KI, Vinten-Johansen J. Perivascular responses after angioplasty which may contribute to

postangioplasty restenosis: a role for circulating myofibroblast precursors? Ann N Y Acad Sci. 2001;947:68-90.

- 18. Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, et al. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2001;37:1478-92.
- 19. Farb A, Burke AP, Kolodgie FD, Virmani R. Pathological mechanisms of fatal late coronary stent thrombosis in humans. Circulation. 2003;108:1701-6.
- Finn AV, Nakazawa G, Joner M, Kolodgie FD, Mont EK, Gold HK, et al. Vascular responses to drug eluting stents: importance of delayed healing. Arterioscler Thromb Vasc Biol. 2007; 27:1500-10.