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‘‘Where is the wisdom we have lost in knowledge? Where is the

knowledge we have lost in information?’’

T.S. Eliot, Choruses from the Rock, 1934

In the 15 years since the completion of the Human Genome

Project, the field of cardiovascular genetics and genomics has

undergone a remarkable transformation. From targeted, hypothe-

sis-driven investigations of Mendelian disorders such as familial

hypercholesterolemia, studies of genetic contributions to cardio-

vascular disease have quickly expanded to agnostic, genome-wide

scans of increasing resolution, essentially becoming a ‘big data’

problem. The availability of whole genome-sequencing data

continues to grow exponentially: in the coming years, the

Trans-Omics for Precision Medicine1 and the Centers for Common

Disease Genomics2 programs in the United States are poised to

sequence more than 250 000 individual genomes, approximately,

of which around 25 000 individuals will be cases of early onset

coronary artery disease and stroke. In addition to institutional

commitment, this data explosion was enabled by technological

advances that have dramatically lowered genotyping costs, with

the promise of the $100 genome now on the horizon.3

The first wave of large-scale genome-wide association studies

(GWAS) of cardiovascular phenotypes has produced several

findings that were biologically plausible, yet explained only a

small proportion of the overall phenotypic variability. For

example, the seminal GWAS of circulating lipids conducted in

> 100 000 individuals of European ancestry identified 95 signifi-

cant loci accounting for only 10% to 12% of the overall trait

variance and 25% to 30% of the heritable component.4 A

subsequent effort expanding the search beyond common (minor

allele frequency > 5%) variants in > 180 000 individuals

uncovered associations with 62 additional loci that cumulatively

enhanced the explained variance by < 3%.5 Similarly, recent

large-scale GWAS of blood pressure traits6,7 have identified

approximately 50 relevant loci explaining only about 2% of the

phenotypic variance.8 The largest meta-analysis of coronary

artery disease GWAS to date revealed a similar genetic architec-

ture, with most of the heritability (approximately 13%) explained

by common loci and rare variants adding only another 2%.9

Notably, the modest explanations offered by GWAS findings are

not always indicative of limited therapeutic potential. This is

especially well illustrated by the HMGCR polymorphisms, which

exhibit small effect sizes in GWAS,4 yet statin therapies targeting

its gene product have been remarkably successful for lowering

cardiovascular risk.10 Similarly, the promise of PCSK9-targeting

therapies, discussed recently in a review article published in

Revista Española de Cardiologı́a,11 is disproportionate to the

phenotypic variance explained (< 1% in plasma triglyceride

levels).12 Because variance explained depends on both effect size

and allele frequency in the population, genetic findings that will

emerge from future exome- and whole genome-sequencing

studies—illustrated by the example of APOC13—could still eluci-

date the underlying mechanisms and inform therapeutic devel-

opments despite their limited contributions to trait heritability.

To locate such valuable findings in the haystack of genome-wide

data, however, it may be wise to incorporate other layers of -omics

and functional data, using bioinformatic algorithms to prioritize

functionally relevant variants.

The study of genome-wide epigenetic variation, specifically

DNA methylation, has so far been another fruitful avenue of

inquiry. Epigenetic processes embody environmental influences

such as diet, lifestyle, and other factors by direct biochemical

modifications of the DNA molecule. Although the extent, if any, of

transgenerational epigenetic inheritance in humans is still

unclear,14,15 it may potentially add to the total heritability of

any given trait. In the first published studies of plasma lipids, up to

8 methylation loci explained 5.5% to 11.6% of triglyceride variation

across several cohorts16–18; several consortia meta-analyses of

other cardiovascular phenotypes (incident coronary heart disease,

circulating cytokines, hypertension, and others) are currently

underway and have shown promising preliminary results.19

Although this relative success of the epigenome-wide studies

may in part be due to the ‘winner’s curse,’20 it also has biological

underpinnings: methylation variation, with its corresponding

changes in gene transcription, is more proximal to the phenotype
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than changes in the DNA sequence, and is thus more likely to have

a larger effect. However, most methylome-wide studies conducted

in large cohorts are plagued by their cross-sectional nature (which

precludes from establishing temporality or causality) as well as the

unavailability of the biologically relevant tissue (eg, liver for lipid

metabolism). Recent attempts to address the causality challenge

using Mendelian randomization techniques21 were limited by the

lack of robust genetic instruments for complex traits, such as

plasma lipids or blood pressure, and hampered by the low

proportion of variance explained by known polymorphisms, as

discussed above. Therefore, there is pressing need for carefully

controlled functional studies in vitro and in animal models to test

the causality of genes identified by genome- and epigenome-wide

studies of cardiovascular traits.

Epigenetic processes also play a critical role in programming

cardiometabolic risk during the early stages of development.21,22 A

consistent body of evidence shows that impaired fetal growth is

associated with DNA methylation levels. For example, individuals

who experienced in utero exposure to famine during the Dutch

Hunger Winter (1944-1945) had differential whole-blood meth-

ylation levels of the insulin-like growth factor 2 (IGF2) gene

6 decades later,23 as well as in 6 out of 15 other candidate genes

involved in metabolic and cardiovascular disease,24 compared

with their unexposed, same-sex siblings. Other studies show that

monozygotic twins with discordant birth weight show whole-

blood DNA methylation differences.25 In rural Gambia, where there

are profound seasonal fluctuations in the availability of food,

whole-blood DNA methylation patterns in children varied

according to the season of their conception.26 More research is

needed to determine whether these methylation changes associ-

ated with impaired fetal growth mediate high cardiometabolic risk

later in life. The identification of high-risk epigenetic signatures

may point to metabolic pathways affected by fetal undernutrition.

Upon successful validation, these epigenetic patterns may also

serve as biomarkers for cardiovascular risk stratification.

Any discussion of cardiovascular epigenetics would be remiss to

exclude miRNAs, reviewed in 2 recent articles published in Revista

Española de Cardiologı́a.27,28 Several large-scale studies29–31 have

offered new insights into the role of miRNAs (miR148a and miR33a/

b) as key regulators of metabolic processes, particularly fatty acid

oxidation and cholesterol efflux; other investigations have pro-

posed the use of miRNAs (eg, the miR133 family, miR19b-3p,

miR134-5p, and miR-186-5p) as biomarkers of myocardial infarc-

tion.32,33 These findings, however, have yet to be translated to the

clinical setting, and most studies have so far failed to show the

superiority of miRNA-based biomarkers over traditional risk factors

such as troponin.34 Additionally, miRNAs exhibit impressively

pleiotropic effects, impacting expression of multiple genes in a

variety of tissues, thus posing the challenge of specificity for any

potential therapies. Even more interestingly, miRNAs (specifically

miR33a/b) play a role in interactions between 3 genes that have

previously emerged on methylome-wide screens for plasma lipids

(CPT1A, ABCG1, and SREBF1),30 illustrating the necessity of analytic

approaches that integrate across -omics layers for a fuller

understanding of complex traits.

Another -omic layer that has received attention in the

cardiovascular realm is metabolomics, the quantification of

small-molecule circulating metabolites (usually via nuclear

magnetic resonance or mass spectrometry) that offers additional

granularity in investigating disease etiology. For example,

4 metabolites were predictive of cardiovascular risk in multiple

cohorts, with serum phenylalanine and monounsaturated fatty

acid levels indicating a higher likelihood of incident events, while

omega-6 and docoxenaenoic acids were associated with an

improved risk profile,35 independently of traditional risk factors.

While the physiologic relevance of these 4 markers had been

relatively well understood even prior to that study, other high-

throughput metabolomics screens have identified novel targets,

most notably GlycA,36 a marker of systemic inflammation that

was subsequently linked to cardiovascular morbidity and

mortality,37 and trimethylamine-N-oxide (TMAO), a proathero-

genic species38 that promoted atherosclerosis in a mouse model39

and was independently associated with the risk of adverse

cardiovascular events40 in humans. The TMAO discovery in

particular illustrated the contribution of yet another -omic layer:

metagenomics, or the composition of bacteria that live in the gut

and synthesize TMAO precursors in response to dietary inputs

such as red meat, fish, and eggs.41 Current efforts are underway to

develop drugs targeting the microbiome; although still in their

infancy, they illustrate the clinical promise of well-validated -

omic targets.

With the growing abundance of -omic data on hundreds of

thousands of individuals, the main challenges facing cardiovascu-

lar genomics lie in analysis, interpretation, and application. In

addition to the obvious hurdle of the astronomical multiple testing

burden, there is a dearth of methods that fully exploit the wealth of

quantified variation by integrating across -omics layers. Most

cardiovascular studies that do attempt integration do it in a

‘pairwise’ fashion, eg, linking DNA sequence and epigenetics/

expression via methylation/expression quantitative trait analysis,

or via GWAS of metabolomics traits or microbiome composition, or

via Mendelian randomization. These ‘pairwise’ methods compar-

ing 2 -omic layers fail to capture the contribution of other

intermediate phenotypes, as well as higher-order interactions.

Structural equation models42 represent a more sophisticated

strategy for generating causal insights into multidimensional data,

yet—much like Mendelian randomization—warrant their own set

of assumptions that may not be explicitly tested using data from

human populations. A number of integration methods that rely on

available bioinformatics resources, eg, methods that leverage prior

knowledge of biologic pathways, are limited by the inconsistency

of public databases and their bias toward known genes.43

The metaphor of ‘drinking from a fire hose’ that emerged during

early GWAS44 is even more accurate today, and methodological

creativity is urgently needed to harness the tremendous potential

of the -omics data that are now or will soon become available. To

transform cardiovascular -omics studies from a very expensive

fishing expedition to truly personalized medicine, the field needs

fully integrative trans-omic approaches, complete with laboratory

follow-up of -omics findings. Mere replication of -omics results is

no longer sufficient but must be supplemented by functional

validation. If successful, such studies could inform novel drug

therapies and risk stratification approaches, leveraging ‘big data’ to

make a big impact in the fight against cardiovascular disease.
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S. Aslibekyan, E.A. Ruiz-Narváez / Rev Esp Cardiol. 2017;70(9):696–698 697

https://www.nhlbi.nih.gov/research/resources/nhlbi-precision-medicine-initiative/topmed/wgs
https://www.nhlbi.nih.gov/research/resources/nhlbi-precision-medicine-initiative/topmed/wgs
https://www.genome.gov/27563570/
https://www.statnews.com/2017/01/09/illumina-ushering-in-the-100-genome/
https://www.statnews.com/2017/01/09/illumina-ushering-in-the-100-genome/


4. Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population
relevance of 95 loci for blood lipids. Nature. 2010;466:707–713.

5. Global Lipids Genetics C, Willer CJ, Schmidt EM, et al. Discovery and refinement of
loci associated with lipid levels. Nat Genet. 2013;45:1274–1283.

6. Wain LV, Verwoert GC, O’Reilly PF, et al. Genome-wide association study identifies
six new loci influencing pulse pressure and mean arterial pressure. Nat Genet.
2011;43:1005–1011.

7. Johnson AD, Newton-Cheh C, Chasman DI, et al. Association of hypertension drug
target genes with blood pressure and hypertension in 86,588 individuals. Hyper-
tension. 2011;57:903–910.

8. Salfati E, Morrison AC, Boerwinkle E, Chakravarti A. Direct Estimates of the
Genomic Contributions to Blood Pressure Heritability within a Population-Based
Cohort (ARIC). PLoS One. 2015;10:e0133031.

9. Nikpay M, Goel A, Won HH, et al. A comprehensive 1,000 Genomes-based genome-
wide association meta-analysis of coronary artery disease. Nat Genet.
2015;47:1121–1130.

10. Kathiresan S, Srivastava D. Genetics of human cardiovascular disease. Cell.
2012;148:1242–1257.

11. Elosua R, Sayols-Baixeras S. The Genetics of Ischemic Heart Disease: From Current
Knowledge to Clinical Implications. Rev Esp Cardiol. 2017;70:754–762.

12. Talmud PJ, Smart M, Presswood E, et al. ANGPTL4 E40K and T266 M: effects on
plasma triglyceride and HDL levels, postprandial responses, and CHD risk. Arter-
ioscler Thromb Vasc Biol. 2008;28:2319–2325.

13. TG, HDL Working Group of the Exome Sequencing Project NHLBlood I, Crosby J, et
al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl
J Med. 2014;371:22–31.

14. Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and
mechanisms. Cell. 2014;157:95–109.

15. Sen A, Heredia N, Senut MC, et al. Multigenerational epigenetic inheritance in
humans: DNA methylation changes associated with maternal exposure to lead can
be transmitted to the grandchildren. Sci Rep. 2015;5:14466.

16. Irvin MR, Zhi D, Joehanes R, et al. Epigenome-wide association study of fasting
blood lipids in the Genetics of Lipid-lowering Drugs and Diet Network study.
Circulation. 2014;130:565–572.

17. Braun KV, Dhana K, de Vries PS, et al. Epigenome-wide association study (EWAS) on
lipids: the Rotterdam Study. Clin Epigenetics. 2017;9:15.

18. Sayols-Baixeras S, Subirana I, Lluis-Ganella C, et al. Identification and validation of
seven new loci showing differential DNA methylation related to serum lipid
profile: an epigenome-wide approach. The REGICOR study. Hum Mol Genet.
2016;25:4556–4565.

19. Aslibekyan S, Agha G, Ligthart S, et al. Novel DNA Methylation Loci Associated With
Circulating Tumor Necrosis Factor-alpha, a Marker of Systemic Inflammation.
Circulation. 2016;134:A18708.

20. Kraft P. Curses–winner’s and otherwise–in genetic epidemiology. Epidemiology.
2008;19:649–651.

21. Dekkers KF, van Iterson M, Slieker RC, et al. Blood lipids influence DNA methylation
in circulating cells. Genome Biol. 2016;17:138.

22. Low FM, Gluckman PD, Hanson MA. Developmental plasticity and epigenetic
mechanisms underpinning metabolic and cardiovascular diseases. Epigenomics.
2011;3:279–294.

23. Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated
with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A.
2008;105:17046–17049.

24. Tobi EW, Lumey LH, Talens RP, et al. DNA methylation differences after exposure to
prenatal famine are common and timing- and sex-specific. Hum Mol Genet.
2009;18:4046–4053.

25. Chen M, Baumbach J, Vandin F, et al. Differentially Methylated Genomic Regions in
Birth-Weight Discordant Twin Pairs. Ann Hum Genet. 2016;80:81–87.

26. Waterland RA, Kellermayer R, Laritsky E, et al. Season of conception in rural gambia
affects DNA methylation at putative human metastable epialleles. PLoS Genet.
2010;6:e1001252.

27. Corella D, Ordovás JM. Basic Concepts in Molecular Biology Related to Genetics and
Epigenetics. Rev Esp Cardiol. 2017;70:744–753.

28. De Gonzalo-Calvo D, Iglesias-Gutiérrez E, Llorente-Cortés V. Epigenetic Biomarkers and
Cardiovascular Disease: Circulating MicroRNA. Rev Esp Cardiol. 2017;70:763–769.

29. Goedeke L, Rotllan N, Canfran-Duque A, et al. MicroRNA-148a regulates LDL
receptor and ABCA1 expression to control circulating lipoprotein levels. Nat
Med. 2015;21:1280–1289.

30. Pfeiffer L, Wahl S, Pilling LC, et al. DNA methylation of lipid-related genes affects
blood lipid levels. Circ Cardiovasc Genet. 2015;8:334–342.

31. Wagschal A, Najafi-Shoushtari SH, Wang L, et al. Genome-wide identification of
microRNAs regulating cholesterol and triglyceride homeostasis. Nat Med.
2015;21:1290–1297.

32. Boon RA, Dimmeler S. MicroRNAs in myocardial infarction. Nat Rev Cardiol.
2015;12:135–142.

33. Wang KJ, Zhao X, Liu YZ, et al. Circulating MiR-19b-3p, MiR-134-5p and MiR-186-
5p are Promising Novel Biomarkers for Early Diagnosis of Acute Myocardial
Infarction. Cell Physiol Biochem. 2016;38:1015–1029.

34. Goretti E, Devaux Y. Which future for circulating microRNAs as biomarkers of acute
myocardial infarction? Ann Transl Med. 2016;4:440.

35. Wurtz P, Havulinna AS, Soininen P, et al. Metabolite profiling and cardiovascular
event risk: a prospective study of 3 population-based cohorts. Circulation.
2015;131:774–785.

36. Otvos JD, Shalaurova I, Wolak-Dinsmore J, et al. GlycA: A Composite Nuclear
Magnetic Resonance Biomarker of Systemic Inflammation. Clin Chem.
2015;61:714–723.

37. Duprez DA, Otvos J, Sanchez OA, Mackey RH, Tracy R, Jacobs Jr DR. Comparison of
the Predictive Value of GlycA and Other Biomarkers of Inflammation for Total
Death, Incident Cardiovascular Events, Noncardiovascular and Noncancer Inflam-
matory-Related Events, and Total Cancer Events. Clin Chem. 2016;62:1020–1031.

38. Mayr M. Recent highlights of metabolomics in cardiovascular research. Circ
Cardiovasc Genet. 2011;4:463–464.

39. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine
promotes cardiovascular disease. Nature. 2011;472:57–63.

40. Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phospha-
tidylcholine and cardiovascular risk. N Engl J Med. 2013;368:1575–1584.

41. Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-
carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med.
2013;19:576–585.

42. Tseng GC, Debashis G, Zhou XJ. Structure Equation Models In Integrating Omics Data.
Cambridge: Cambridge University Press; 2015:285–288.

43. Aslibekyan S, Almeida M, Tintle N. Pathway analysis approaches for rare and
common variants: insights from Genetic Analysis Workshop 18. Genet Epidemiol.
2014;38(Suppl 1):S86–S91.

44. Hunter DJ, Kraft P. Drinking from the fire hose–statistical issues in genomewide
association studies. N Engl J Med. 2007;357:436–439.
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