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Based on the fundamentals covered in the previous review

article,1 this second paper explores more complex challenging

situations in survival analyses. We now present some extensions to

the Cox proportional hazards (CPH) model, such as the stratified

and frailty models, and the use of time-dependent variables. We

explore the problems faced by researchers in the cardiovascular

field due to multiplicity of outcomes, and present some approaches

to tackle this issue, such as the use of composite outcomes,

competing risks, multistate models, and recurrent-event methods.

An increasingly popular topic is the use of the win ratio approach.

To provide a comprehensive overview of the most common

statistical approaches in survival analyses, some other methods are

briefly introduced, such as the restrictive mean survival time, and

accelerated failure time model approaches. For a better under-
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A B S T R A C T

This article is the second of a series of 2 educational articles. In the first article, we described the basic

concepts of survival analysis, summarizing the common statistical methods and providing a set of

recommendations to guide the strategy of survival analyses in randomized clinical trials and

observational studies. Here, we introduce stratified Cox models and frailty models, as well as the

immortal time bias arising from a poor assessment of time-dependent variables. To address the issue of

multiplicity of outcomes, we provide several modelling strategies to deal with other types of time-to-

event data analyses, such as competing risks, multistate models, and recurrent-event methods. This

review is illustrated with examples from previous cardiovascular research publications, and each

statistical method is discussed alongside its main strengths and limitations. Finally, we provide some

general observations about alternative statistical methods with less restrictive assumptions, such as

the win ratio method, the restrictive mean survival time, and accelerated failure time model.
�C 2021 Sociedad Española de Cardiologı́a. Published by Elsevier España, S.L.U. All rights reserved.

Análisis de supervivencia en investigación cardiovascular (II): metodologı́a
estadı́stica en situaciones complejas

Palabras clave:

Análisis de supervivencia
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Metodologı́a

R E S U M E N

Esta revisión es la segunda parte de 2 artı́culos sobre metodologı́a estadı́stica. En el primero, se

describı́an los conceptos básicos del análisis de supervivencia y los métodos estadı́sticos más

comúnmente utilizados y se aportaba un conjunto de recomendaciones para ayudar a establecer una

estrategia de análisis de supervivencia, tanto en el contexto de un ensayo clı́nico aleatorizado como en el

de un estudio observacional. En este segundo artı́culo, se introducen el modelo estratificado de Cox y

el modelo de fragilidad y se ilustra el sesgo de tiempo inmortal secundario a una evaluación errónea de

variables dependientes del tiempo. Para abordar el problema de la existencia de múltiples eventos

clı́nicos, se introducen distintas aproximaciones estadı́sticas, como el análisis de riesgos competitivos,

los modelos multiestado y el modelo de eventos recurrentes. Todos ellos se ilustran con ejemplos del

campo cardiovascular, y se resumen las principales ventajas y limitaciones de cada uno de los métodos

estadı́sticos. Por último, se presentan algunas consideraciones generales sobre métodos estadı́sticos

alternativos, con asunciones menos restrictivas, como el método win ratio, el tiempo de supervivencia

medio restringido y el modelo de tiempo de evento acelerado.
�C 2021 Sociedad Española de Cardiologı́a. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.
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standing, we will illustrate how these methods have been applied

to data from cardiovascular studies. This review is primarily

descriptive in content, and therefore no prerequisite mathematical

or statistical knowledge is necessary.

EXTENSIONS OF THE COX PROPORTIONAL HAZARDS MODEL

Stratified Cox proportional hazards model

The CPH model is by far the most commonly used model in

survival analysis. Some extensions to this model can be considered

when it does not provide a good fit to our data. In the stratified CPH

model, instead of assuming that the proportional hazards (PH)

model holds for the overall cohort, we assume that the PH model

holds within groups (or strata) of individuals. Study variables that

are assumed to satisfy the PH assumption are included in the

model, whereas the factor being stratified is not included, and is

controlled by stratification. Hence, this method does not provide

an estimate of the effect of the factor (or factors) defining the

groups on the hazard (ie, it does not provide a hazard ratio

of the stratifying variable) and is therefore not a suitable approach

if the factor exhibiting nonproportionality is of primary interest. To

evaluate the effect of mineralocorticoid receptor antagonists in

preventing sudden cardiac death in patients with heart failure (HF)

with reduced ejection fraction, a stratified CPH model was needed

to address the inevitable baseline differences across 11 032

patients recruited from 3 placebo-controlled randomized trials

(RCTs): RALES (Randomized Aldactone Evaluation Study), EPHE-

SUS (Eplerenone Post–Acute Myocardial Infarction Heart Failure

Efficacy and Survival Study), and EMPHASIS-HF (NCT00232180).

Although all patients had in common the fact that they had HF with

reduced ejection fraction, participants from EMPHASIS-HF were in

New York Heart Association class II, whereas those from RALES

were in New York Heart Association class III-IV, and participants

from EPHESUS had a recent myocardial infarction (MI).2 In other

cases, CPH models are stratified by geographic region and baseline

renal function at baseline.3

Frailty models

In a stratified CPH, baseline hazards functions from different

strata are unrelated. This is based on the assumption that the study

population is homogeneous across strata. However, individuals

may differ greatly within strata (eg, in an RCT, with respect to the

treatment effect, whereas in an observational study, with respect

to the influence of covariates in a given association). The presence

of unobserved individual-specific risk factors leads to unobserved

heterogeneity in the hazard, which is also referred to as frailty, or a

random effect. Importantly, in many situations the population

cannot be assumed to be homogeneous (eg, a mixture of

participants with different hazards). In this case, in contrast to

the CPH model, a frailty model is useful as it implies that baseline

hazard functions are proportional to each other.

Frailty models are random effects models for time-to-event

data,4 in which the random effect has a multiplicative effect on the

baseline hazard function. In the context of survival models, this

random effect is called ‘‘frailty’’ for historical reasons, as the term

simply refers to the fact that some individuals are intrinsically

more ‘‘frail’’ than others. The classic example occurs when a study

involves the recruitment of patients from different hospitals.

Survival times from participants at the same hospital tend to be

similar (eg, due to treatment practices, level of tertiary activity, etc)

and there is a greater between-hospital variability than within-

hospital variability. These clustered (or hierarchical) data need a

model accounting for the clustering. A natural way to model

dependence of clustered event times is through the introduction of

a cluster-specific random effect—the frailty.4 This random effect

explains the dependence in the sense that had we know the frailty,

the events would be independent. The use of frailty models is

relatively popular. They have been applied in some studies using

the EPICOR (Long-term Follow-up of Antithrombotic Management

Patterns in Acute Coronary Syndrome Patients) registry,5 where in

addition to adjusting for age, sex and other relevant confounders,

the model had a random effect (shared frailty) at the hospital

level.5

Time-dependent variables

Sometimes explanatory variables change over time in an

individual (eg, treatment, blood pressure, or smoking status).

These variables are known as time-dependent, time-updated, or

time-varying variables. If changes over time in these variables are

not taken into account, the results yielded by a survival model may

provide a bias known as ‘‘immortal time’’ bias, or survivorship

bias.6

Immortal time refers to a period of follow-up where the event of

interest cannot occur because the subject has not yet started the

exposure.6 A subject is not literally immortal during this period,

but remains event-free until classified as exposed. An incorrect

consideration of this unexposed time period in the analysis will

lead to immortal time bias.6 If the unexposed follow-up time is

misclassified as exposed, patients in the exposed group are

inherently given a survival advantage. Consequently, immortal

time bias of this type results in spurious protective effects of the

exposure. Classic immortal time bias examples in the literature

have been found in the Texas7 and Stanford Heart Transplant data,8

with both studies concluding that a heart transplant prolongs

survival in those patients on a transplant waiting list. However,

data were poorly analyzed because heart transplant was not

treated as a time-varying variable. The waiting time of all patients

who were alive until they received a transplant was classified as

exposed to transplant (instead of unexposed), and gave a survival

advantage time to the transplanted group. Deaths that occurred

while waiting for a transplant were categorized into the non-

transplant cohort. By not being correctly classified, the immortal

time increased the mortality rate of the nontransplant group,

suggesting a benefit of transplant.9 However, when adequately

analyzed, the major survival advantage of the intervention

disappeared when the follow-up times where properly accounted

for.10

When estimating the effect of time-dependent covariates, the

follow-up period has to be divided into subintervals (time until
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exposure and time from exposure onwards), which means that a

subject might have more than one subinterval (eg, more than one

row in the dataset, one for each subinterval). Subjects enter the

study alive, awaiting the exposure, then are censored when they

become exposed, and start a new subinterval of time (new row in

the dataset) where the entry time is the censored time from

the first subinterval, with a new covariate value indicating

postexposure. Using the EPICOR cohort, Bueno et al.11 evaluated

the impact of dual antiplatelet therapy (DAPT) duration in acute

coronary syndrome patients, and the change from DAPT to single

antiplatelet therapy (SAPT) in mortality. DAPT was entered into the

model as a time-updated categorical variable (0 meant being on

DAPT, 1 meant a change to SAPT). For patients who were always on

DAPT, never receiving SAPT, the value of the time-updated

variables was 0 throughout their follow-up. For those changing

from DAPT to SAPT (usually after 1-year of follow-up), the authors

provided follow-up time to both groups (time exposed to DAPT,

and time exposed to SAPT).

Two approaches can be used to estimate the impact of time-

dependent covariates12: the CPH model, which can accommo-

date time-dependent variables, and the landmarking approach.

The latter involves setting a landmark time point and using the

value of the time-dependent  covariate at this landmark point as

a time-fixed covariate. By using this approach, participants

with an event before the landmark time point are excluded

from the survival analysis, which starts from the landmark time

point onwards, in the subset of participants at risk at that

given time.

ALTERNATIVE MODELS FOR SURVIVAL DATA

The CPH model is the most common approach used for the

analysis of time-to-event data. However, this regression model

may not be appropriate in some situations, such as when the

hazard ratio is not constant over time.13,14 Furthermore,

one limitation of the CPH is that the hazard ratio is a relative

measure that does not quantify absolute effects or associations.

Other approaches may overcome some of the limitations of PH

analysis. However, when PH are satisfied, the CPH model is the

most statistically powerful method.13

Restricted mean survival time

Restricted mean survival time (RMST) is a measure of average

survival from time 0 to a specified time point, and may be

estimated as the area under the survival curve up to that point.13,14

Associations are expressed as the difference in RMST between

groups at a suitable follow-up time, which is easy to interpret by

both clinicians and patients (eg, if the outcome of interest is

mortality, the estimate would be loss of life expectancy). In

addition, the difference between RMST provides an absolute

measure (eg, in a 2-arm RCT, RMST provides the absolute benefit or

harm). This approach does not require assumptions about hazards

and has the advantage of being valid under any distribution of

survival time, or when it is expected for an association to vary over

time, such as an intervention with either early or late treatment

effects.

RMST analysis captures the entire survival history, does not

change with extended follow-up time, and is routinely associated

with a clinically meaningful time point.15 In HF RCTs, RMST seems

to add value to traditional PH analyses by providing clinically

relevant estimates of treatment effects, in line with the findings

yielded by other statistical methods.16

Accelerated failure time

This approach is known as the accelerated failure time model

because the term ‘‘failure’’ indicates the death or event, while the

term ‘‘accelerated’’ indicates the factor for which the rate of failure

is increased. That factor is called the ‘‘acceleration factor’’.17

Instead of the hazard, the key measure of the association between

the study variable and survival time is the acceleration factor,

which is a ratio of survival times. Similar to the CPH model, the

accelerated failure time model describes the relationship between

survival probabilities and a set of covariates, estimating a relative

(not an absolute) association. The accelerated failure time model

provides an estimate of the ratio of the median event times, which

can be translated to clinicians as the expected reduction in the

duration of illness with treatment.17

MULTIPLICITY OF OUTCOMES IN SURVIVAL ANALYSIS

Clinical studies may evaluate multiple outcomes to try to

maximize the information provided by clinical studies. In the field

of cardiovascular research, the outcomes of interest might include

stroke, HF, MI, sudden death, cardiovascular death, or all-cause

death. To avoid inflation of the type I error rate by testing each

outcome separately, a potential solution is to use a composite

endpoint by including all the outcomes based on the time-to-first-

event principle. Composite outcomes have several advantages,18

such as accounting for both fatal and nonfatal events, and hence

leading to higher event rates and power (thus requiring smaller

sample sizes or shorter follow-ups).19 Nevertheless, they also have

some weaknesses,20 such as the underlying assumption that

each individual outcome involved in a composite is of similar

importance to patients.21 It is also common to have higher event

rates and larger treatment effects associated with less important

components.22Hence, the use of composite outcomes is not always

optimal. There are some situations that require more sophisticated

statistical approaches than simply using a composite outcome on a

time-to-first event basis, such as: a) the use of a competing risk

assessment in the evaluation of nonfatal events, where the

occurrence of fatal events can bias the findings; b) the use of

multistate models to take into account intermediate states (eg, a

HF hospitalization is common before an HF-related death)23; c) the

use of recurrent-event methods to fully capture the burden of

chronic diseases, which may involve several hospitalizations over

the follow-up period; and d) the win ratio approach to provide

a hierarchical assessment of the individual components of a

composite outcome.

COMPETING RISKS

The censoring assumption

Uninformative or independent censoring is assumed for the

most popular approaches in survival analyses: those who are

censored have the same hazard of the event of interest as those

who are not censored.24,25 In other words, the uncensored

individuals who remain under follow-up should be representative

of the survival experience in the censored individuals. However, if

censoring occurs due to another known event taking place, the

assumption of uninformative censoring is violated. Competing

risks occur when the event of interest is a particular cause of failure

(eg, cardiovascular death), which can take place alongside other

causes of failure (eg, noncardiovascular death due to cancer). The

competing risk may prevent the event of interest from taking
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place: a person who dies of cancer is no longer at risk of

cardiovascular death (figure 1).

Competing risk bias: impact on the cumulative incidence of
events

A competing risk bias happens when censoring is informative

due to multiple causes of failure. This bias has been reported in

almost half of Kaplan-Meier analyses published in medical

journals.26 If we estimate the survival probability of sudden death

in patients with HF with reduced ejection fraction and censor the

other causes of death (eg, HF-related death), the cumulative

incidence of events over time (which is 1 minus the survival

probability) will overestimate the probability of death due to

sudden death.2 Indeed, by using the Kaplan-Meier estimator and

censoring the other causes of death, we assume that those

censored due to an HF-related death have the same future hazard

of sudden death as those who have not yet had any event. Since

those who have already died from other reasons can never

experience death from sudden death, this can never be true. By

assuming that those already dead from other causes are still at risk

of sudden death, and that they can be represented by those not yet

experiencing any event, the Kaplan-Meier approach overestimates

the probability of failure, and therefore underestimates the

probability of surviving at a given time. Another classic example,

for patients with implanted cardioverter-defibrillators, can be

found elsewhere.27

Figure 1. Graphical representation of the competing risks model. A: a classic competing risk challenge with 2 fatal outcomes. B: a more challenging and realistic

situation, where several risks are competing in patients with a severe disease.
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Addressing statistical analysis in competing risks

Two different hazard regression models are available in

scenarios where competing risks are present28,29: modelling the

cause-specific hazard, or the subdistribution hazard function.

A) The cause-specific hazard function (use of cumulative incidence

function [CIF]). The CIF estimates the incidence of an event of

interest while allowing for a competing risk. Individuals

experiencing the competing event are no longer considered at

risk of the event of interest. In the simplest case, when there is only

1 event of interest and no competing risks, the CIF would equal

the 1–Kaplan-Meier estimate. The CIF takes into account both the

probability of experiencing the event of interest, conditioned upon

not experiencing either event (primary or competing) until that

time. The sum of the CIF estimates for each outcome individually

equals the CIF estimate of the composite outcome consisting of all

competing events. Unlike the survival function in the absence of

competing risks, the CIF function of the event of interest will not

necessarily approach unity with time, because of the occurrence of

competing events that preclude the occurrence of the event

of interest.28 The CIF can be interpreted as the instantaneous rate of

the primary event in those participants who are currently event

free.

B) Fine and Gray model (use of subdistribution hazard function).

Fine and Gray modified the CPH model to allow for the presence of

competing risks.30 The subdistribution hazard function for a given

type of event is defined as the instantaneous rate of occurrence of

the given type of event in participants who have not yet

experienced an event of that type. Hence, in this model, we are

considering the rate of the event in those participants who

are either currently event-free or who have previously experienced

a competing event (although it feels unnatural to keep dead

participants at risk for other events). This differs from the risk set

for the cause-specific hazard function, which only includes those

who are currently event free. In this way, there is a subdistribution

hazard function for each outcome (eg, one for sudden death, and

another for HF-related death).

The CIF model estimates the impact of covariates on the cause-

specific hazard function, while the Fine-Gray subdistribution

hazard model estimates the impact of covariates on the

subdistribution hazard function.27 Because the CIF model relies

on participants actually at risk (event-free participants), hazard

ratios from this model should be interpreted among individuals

who have not yet experienced the event of interest or the

competing event and therefore this approach is optimal for

answering etiological research questions. In contrast, by keeping at

risk those individuals who have experienced the competing risk,

the subdistribution hazard model may be of greater interest if the

focus is on the overall impact of covariates on the incidence of

the event of interest, and is optimal to perform risk prediction and

risk-scoring systems.31

MULTISTATE MODELS

Definition of absorbing and nonabsorbing events

An absorbing event prevents the outcome of interest from

subsequently taking place (eg, a cardiovascular death prevents a

cancer death). Sometimes, there is an intermediate event, which

may occur before the absorbing event, known as nonabsorbing

event. These intermediate events are of particular interest when

their occurrence substantially changes the likelihood of the

outcome of interest happening, and hence, may provide more

detailed information on the natural history of the disease. The

intermediate event can be interpreted as a deterioration or

improvement step in the disease process. This step was illustrated

by Solomon et al.,23 who assessed the influence of nonfatal

hospitalizations for HF on subsequent mortality in patients with

chronic HF. In contrast to the relatively stable mortality risk

observed over time in patients with HF from the CHARM

(Candesartan in Heart failure: Assessment of Reduction in

Mortality and morbidity) program, these authors found a higher

likelihood of dying in the immediate post discharge period of a HF

hospitalization, which was directly associated with the duration

and frequency of HF hospitalizations.23Having a HF hospitalization

(nonabsorbing event) changed the hazard of the outcome of

interest (mortality).

Nonabsorbing events can be modelled using multistate

models,32 in which the focus is on the change of status over time

(eg, change from baseline status to HF hospitalization, and from

there to cardiovascular death).33

Multistate models: an extension of competing risks models

Multistate models provide a framework that allows analysis of

the natural history of a disease. These models are an extension

of competing risks models (multistate model with 1 initial state

and several mutually exclusive absorbing states), since they extend

the analysis to what happens after the intermediate event.34

This review will consider only continuous time models allowing

changes of state at any time. These models are more realistic and

can be seen as an extension of the standard survival model, as they

describe how an individual moves between a series of discrete

states in continuous time.

Multistate models are appropriate when a disease involves

transitions between several well-defined distinct states. A 2-state

survival model is defined by a living state and a dead state. The

2 main features of the standard survival model are: a) there is

1 event of interest (the transition from alive to dead), which

is unidirectional; and b) the timing of this event may be right-

censored, in which case it is known that the event has not

happened yet. A Kaplan-Meier curve can be thought of as a simple

multistate model with 2 states, and 1 transition between those

2 states. The situation becomes more complex when nonabsorbing

events are included in the model. In the HF setting, HF hospi-

talization can be defined as a transient event (nonabsorbing event).

A 3-state survival model would be defined by a HF-free state, an HF

state, and a dead state. This sets 3 events: death from state 1 (HF-

free state), death from state 2 (HF state), and transition from state

HF-free to HF hospitalization (figure 2). The hazard rates defining

movement from one state to another are defined as transition

intensities, the instantaneous risk of moving from one state to

another at a given time. These transition intensities are equivalent

to the cause-specific hazards described for the competing risks

approach, this situation being a particular case of multistate

models. There are as many hazards to model as there are

transitions.

To run a multistate model, a counting process data structure is

used to frame the data. Hence, each time there is a transition,

another row of information for that individual is needed in the

dataset. In contrast, in a traditional time-to-first event survival

analysis, there is only 1 row of information per patient in the

dataset, including the status and the survival time (time-to-event

or time to censoring).

Recurrence of nonfatal HF or MI are nonabsorbing events

depending on time. Although they can be taken into account in

standard survival models by including the nonabsorbing event as a

binary time-dependent covariate for the risk of death, the best

approach to tackle these patients’ transitions in various states is by

multistate modelling.35 To improve understanding of prognosis, a
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comprehensive model should include both death and nonfatal

clinical events. CPH models are not strictly appropriate since

observations are not independent. Multistate models overcome

this limitation by separately assessing time-to-death and time-to-

disease-related hospitalizations.36

Multistate models in cardiology

Several studies have used multistate models in the field of

cardiovascular research.37 Beyond the classic example of chronic

HF,36 we can find other examples in patients with multivessel

coronary disease. Using data from the BARI trial (NCT00000462),

Zhang et al.38 performed a multistate model, where the initial state

was patients after randomization and before intervention, the

intermediate state was nonfatal MI, and the final state was death.

Standard survival analyses with Cox regression and Kaplan-Meier

estimation for both mortality and the composite outcome of death

or nonfatal MI showed no differences between coronary artery

bypass grafting and percutaneous coronary angioplasty after a

10-year follow-up. Of note, this approach did not take into account

the intermediate state (nonfatal MI). In contrast, multistate

modelling broke the process into 3 transitions, and found

significant differences in outcomes favoring coronary artery

bypass grafting for patients in a transition path of nonfatal MI

to death, whereas for patients without MI, there was no difference

in terms of survival between patients who underwent coronary

artery bypass grafting and those who underwent percutaneous

coronary angioplasty. This study illustrates that the use of

composite outcomes may not capture as much prognostic

information as the use of a multistate model.

RECURRENT-EVENT METHODS

Definition of recurrent event

Most studies evaluate time-to-first event endpoints, so that all

subsequent equal events occurring after a first one are ignored in

the analysis. In HF, this problem becomes even more important as

‘‘time-to-first’’ event analyses do not fully reflect the true burden

of the disease39: In patients admitted to Spanish emergency

departments due to acute HF, 24% revisited the emergency

department within 30 days, and 16% were rehospitalized in the

same follow-up period.40 Of note, each subsequent HF hospitaliza-

tion heralds a substantial worsening of the long-term prognosis.41

In contrast to conventional methods, the use of recurrent-event

methods may capture the burden of disease (figure 3).

Recurrent-event methods have been generally assumed to

improve statistical precision and provide greater statistical power

Figure 3. Graphical representation of the recurrent-risks model. Several situations in the context of recurrent events are illustrated: patient A is hospitalized 4 times

during follow-up (only the first event would be used in conventional survival analyses), patient B is hospitalized twice before dying (only the first hospitalization

would be taken into account using traditional methods), and patient C dies during follow-up without any previous hospitalizations (using a composite endpoint,

information about the disease burden would be lost in this situation).

Figure 2. Graphical representation of the illness-death model in a heart failure example. l, transition intensity function (eg, l12 is the transition intensity function

from state 1 to state 2). HF, heart failure.
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than more conventional time-to-first methods. For instance, in the

CHARM-Preserved trial,42 a borderline result for time-to-first

composite event analysis was achieved. However, post hoc

analyses with a recurrent-event method led to a gain in statistical

power and showed significant evidence of efficacy.19

Statistical analysis in recurrent-event methods

There are several statistical methods addressing the issue of

recurrent events, but there is some controversy as to which of them

is the most appropriate. There are 2 main approaches: through

counts (or event rates), and through times between subsequent

events. Noninformative censoring is assumed in both cases.

For the first approach, based on measuring the number of

events (eg, number of hospitalizations due to worsening HF), there

are 2 main methods.43 The Poisson distribution is the most popular

count model and can be used to determine if event rates differ

between groups, whereas the negative binomial distribution is an

alternative approach that allows for different individual tenden-

cies (frailties). The latter has been retrospectively used to evaluate

recurrent hospitalizations in the EMPHASIS-HF trial.44 In the

TOPCAT (NCT00094302) trial, the prespecified Poisson regression

model was eventually replaced with a negative binomial model to

allow for correlated events.45

There are many methods for the second approach, based on the

time-to-event principle. The Andersen–Gill approach is an exten-

sion of the CPH model, which analyses recurrent events as gap

times (eg, the times between consecutive events).46 The Lin-Wei-

Yang-Ying method is a modified Anderson-Gill model, with a

robust variance estimator to account for the correlation between

events, which is useful when covariates are considered time

dependent. This approach was used for the primary outcome of

total (first and recurrent) HF hospitalizations and cardiovascular

deaths in the PARAGON-HF trial.47 The Ghosh and Lin method

offers a nonparametric estimate of the cumulative number of

recurrent events through time, which incorporates death as a

competing risk.48

Final remarks about recurrent-event methods

Recurrent-event models seem to improve statistical precision

and to provide greater statistical power than time-to-first event

approaches.49 However, the relative width of the 95% confidence

intervals associated with recurrent-event analyses can sometimes

be greater than that from time-to-first event analyses, suggesting a

loss of precision.19 Using trial-based data (CHARM, TOPCAT,

PARADIGM-HF [NCT01035255]), Clagget et al. found that the

increasing heterogeneity of patient risk, a parameter not included

in conventional power and sample size formulae, might explain the

differences between time-to-first and recurrent-event analyses in

terms of treatment effect estimation, precision, and statistical

power.49 In that study, they concluded that the greatest statistical

gains from using recurrent-event methods occur in the presence of

high patient heterogeneity and low rates of study drug discontin-

uation.49

THE WIN RATIO METHOD

The win ratio was introduced in 2012 by Pocock et al.50 as a new

method for examining composite endpoints, and it is becoming

progressively popular in cardiovascular RCTs.51,52 Unlike tradi-

tional methods evaluating composite endpoints, the win ratio

accounts for relative priorities of their components, and even

allows different types of components. For example, the win ratio

can combine the time to death with the number of occurrences of a

nonfatal outcome such as cardiovascular-related hospitalizations

(CVHs) in a single hierarchical composite endpoint. It can also

include quantitative outcomes such as quality-of-life scores.

Based on the principle of the Finkelstein-Schoenfeld test, the

win ratio approach provides an estimate of the treatment effect

(the win ratio) and confidence interval, in addition to a P value.53 In

a simple 2-arm RCT, the application of the win ratio can be

summarized as: a) forming every possible patient-to-patient pair

(each patient in the treatment arm is compared with each patient

in the control arm); and b) within each pair, evaluating the

component outcomes in descending order of importance until one

of the pair shows a better outcome than the other. If the patient on

the treatment has the better outcome it is called a ‘‘win’’, if the

control patient does better it is called a ‘‘loss’’, and, if none of

these situations happens, then it is a ‘‘tie’’.

This approach was used in the ATTR-ACT trial,52 which was a

double-blind trial that randomized 441 patients with transthyretin

amyloid cardiomyopathy to tafamidis (80 and 20 mg), or matching

placebo for 30 months. In the primary analysis, the investigators

hierarchically assessed all-cause mortality, followed by the

frequency of CVHs using the Finkelstein-Schoenfeld53 and win

ratio50 methods. For each pair, they determined whether the

patient receiving tafamidis ‘‘won’’ or ‘‘lost’’ compared with

the patient receiving placebo. Their hierarchical assessment was

to determine: a) who died first (the ‘‘loser’’); and then, b) if neither

Table 1

Summary of differences between the Cox proportional hazards, Poisson and logistic regression models

Cox proportional hazards model ‘‘Interval’’ Poisson regression model Logistic regression model

Research question How long before the event occurs in a

defined time endpoint?

How many times does the event occur in a

defined time endpoint?

Does a subject reach the event in a defined

timeframe?

Modelling Models survival times Models the rate at which the event occurs

independently over time

Models whether an event occurs or not

Use of survival time Analysis of individual survival times Analysis of aggregated patient mortality

rates

Analysis only of events, without taking

into account when they happen. Does not

use survival times

Outcome type Time-to-event Event-count data Dichotomous event data

Association type Hazard ratio Incidence rate ratio Odds ratio

Main assumption Hazard function or death rate are

proportional between groups

Rate of events or relative risk ratio remains

constant over specific time intervals or are

proportional to one another

Does not require the dependent and

independent variables to be related

linearly, but that the independent

variables are linearly related to the log

odds

X. Rossello, M. González-Del-Hoyo / Rev Esp Cardiol. 2022;75(1):77–85 83



died, who had the most CVHs (again the ‘‘loser’’), both being

assessed over their shared follow-up time. After adding up, they

obtained a total of 8595 winners and 5071 losers. Hence, the win

ratio was 8595/5071 = 1.70, with a 95% confidence interval of 1.26-

2.29 and P = .0006.54 By using traditional methods to evaluate a

composite outcome of first CVH or death, we would have ignored

repeat CVHs after the first CVH, as well as any death happening

after a CVH. The win ratio provides greater statistical power to

estimate treatment differences by evaluating hierarchically each

component of a composite outcome.

OTHER APPROACHES: LOGISTIC AND POISSON REGRESSION
MODELLING

In addition to CPH models, survival data is often evaluated using

logistic and Poisson regression models.55,56 The choice between

these models is based on the study design and the nature of the

research question.57 Table 1 summarizes the main differences

between these models in the setting of survival analysis.

CONCLUSIONS

In this second educational review, we have focused on stratified

CPH models, frailty models, and time-dependent variables.

Competing risks, multistate models, recurrent-event methods

and the win ratio approach have been presented to tackle the issue

of multiplicity of outcomes when the use of a composite outcome

and a time-to-first event might not be optimal. The use of

restrictive mean survival time and accelerated time model

approaches have also been illustrated. Adequately modelling

survival data is not a straightforward exercise. This review has

offered practical advice on what should be considered before

choosing the most appropriate model for survival data, as well as

some guidance to interpret the findings yielded by more complex

statistical approaches.
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