
Focus on: Contemporary Methods in Biostatistics (V)

Propensity Score Methods for Creating Covariate Balance in Observational Studies

Cassandra W. Pattanayak,a Donald B. Rubin,a,* and Elizabeth R. Zellb

aDepartment of Statistics, Harvard University, Cambridge, Massachusetts, United States
bDivision of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States

INTRODUCTION

In a randomized experiment, the random assignment of

patients to active treatment or control leads to treatment and

control groups with approximate balance on background

measurements such as age, sex, and medical history. We refer

to these pretreatment measurements as ‘‘covariates.’’ The

covariate balance created by the randomization allows unbiased

estimates of the treatment effect. However, randomized experi-

ments are sometimes not feasible for ethical, logistical, financial, or

other reasons. In these situations, we can attempt to design studies

that parallel randomized experiments as closely as possible, using

observational (ie, non-randomized) data.

When patients are assigned to active treatment or control

nonrandomly, the treatment groups often differ in important ways

on key covariates that are related to outcomes. For example, if the
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A B S T R A C T

Randomization of treatment assignment in experiments generates treatment groups with

approximately balanced baseline covariates. However, in observational studies, where treatment

assignment is not random, patients in the active treatment and control groups often differ on crucial

covariates that are related to outcomes. These covariate imbalances can lead to biased treatment effect

estimates. The propensity score is the probability that a patient with particular baseline characteristics is

assigned to active treatment rather than control. Though propensity scores are unknown in observational

studies, by matching or subclassifying patients on estimated propensity scores, we can design

observational studies that parallel randomized experiments, with approximate balance on observed

covariates. Observational study designs based on estimated propensity scores can generate approximately

unbiased treatment effect estimates. Critically, propensity score designs should be created without access

to outcomes, mirroring the separation of study design and outcome analysis in randomized experiments.

This paper describes the potential outcomes framework for causal inference and best practices for

designing observational studies with propensity scores. We discuss the use of propensity scores in two

studies assessing the effectiveness and risks of antifibrinolytic drugs during cardiac surgery.

Published by Elsevier España, S.L. on behalf of the Sociedad Española de Cardiologı́a.

Métodos de puntuación de propensión para crear una distribución equilibrada
de las covariables en los estudios observacionales
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R E S U M E N

La asignación aleatoria del tratamiento en los experimentos divide a los pacientes en grupos de

tratamiento que están aproximadamente equilibrados en cuanto a las covariables basales. Sin embargo,

en los estudios observacionales, en los que la asignación del tratamiento no es aleatoria, los pacientes de

los grupos de tratamiento activo y de control difieren a menudo en covariables cruciales que están

relacionadas con las variables de respuesta. Estos desequilibrios en las covariables pueden conducir a

estimaciones sesgadas del efecto del tratamiento. La puntuación de propensión (propensity score) es la

probabilidad de que a un paciente con unas caracterı́sticas basales especı́ficas se le asigne el tratamiento

activo, y no el control. Aunque las puntuaciones de propensión son desconocidas en los estudios

observacionales, al parear o subclasificar a los pacientes según las puntuaciones de propensión

estimadas, podemos diseñar estudios observacionales que sean análogos a los experimentos aleatorios,

con un equilibrio aproximado entre pacientes en cuanto a las covariables observadas. Los diseños de

estudios observacionales basados en puntuaciones de propensión estimadas pueden producir

estimaciones aproximadamente insesgadas del efecto del tratamiento. Una cuestión crucial es que

los diseños de puntuación de propensión deben crearse sin tener acceso a las respuestas, imitando la

separación entre el diseño del estudio y el análisis de las respuestas que es propia de los experimentos

aleatorios. En este artı́culo se describen el marco conceptual de las respuestas potenciales para la

inferencia causal y las mejores prácticas para el diseño de estudios observacionales con puntuaciones de

propensión. Comentamos el uso de puntuaciones de propensión en dos estudios en los que se evaluaron

la efectividad y los riesgos de los fármacos antifibrinolı́ticos durante las cirugı́as cardiacas.
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active treatment is considered risky for older patients, then, in

general, patients assigned to the control group may be older than

patients assigned to the active treatment group. A naive

comparison of observed outcomes in these active treatment and

control groups would lead to a biased estimate of the treatment

effect because of the imbalance in age.

In order to generate unbiased treatment effect estimates using

observational data, patients should be grouped (‘‘subclassified’’) or

matched such that treated and control patients within each

subclass or match are well balanced on key observed covariates.

Subclassifying or matching on estimated propensity scores can

create balance on many observed covariates simultaneously,

leading to unbiased treatment effect estimates.1

Propensity score methods have increasingly appeared in

cardiology literature.2–6 Because propensity score techniques are

not always implemented correctly, this paper presents the

underlying framework and outlines best practices. The first section

introduces two examples that we use to illustrate observational

study design. The next section explains the potential outcomes

framework. We then present best practices for designing an

observational study using propensity scores and argue that typical

regression modeling is not appropriate for observational studies.

We conclude with a discussion of the propensity score methods

used in the two examples.

EXAMPLES: APROTININ VERSUS TRANEXAMIC ACID

To illustrate, we focus on two observational studies that used

propensity scores to examine the effects of the serine protease

inhibitor aprotinin during cardiac surgery. Karkouti et al.5 and

Mangano et al.6 each compared blood loss and adverse event rates

among patients receiving aprotinin versus other antifibrinolytic

drugs, including tranexamic acid.

Karkouti et al.5 considered 10 949 cardiac patients at the

Toronto General Hospital who received either aprotinin (active

treatment) or tranexamic acid (control) during cardiac surgery

with cardiopulmonary bypass between June 1999 and June 2004.

Of these patients, 60 were excluded due to participation in

another study, and 19 were excluded because they did not

receive either aprotinin or tranexamic acid. Among the remaining

10 870 patients, 586 received aprotinin, and 10 284 received

tranexamic acid.

Mangano et al.6 enrolled 5436 cardiac patients from

69 medical centers on 4 continents who underwent coronary

artery bypass graft surgery between November 1996 and June

2000.7 Patients either received no antifibrinolytic drugs or

received aprotinin, tranexamic acid, or aminocaproic acid. Among

patients meeting further eligibility criteria, 1295 received

aprotinin and 822 received tranexamic acid.

THE POTENTIAL OUTCOMES FRAMEWORK FOR CAUSAL
INFERENCE

Potential Outcomes

We limit our discussion to studies comparing two treatment

options, though the framework can be extended to more than

two treatments. For each patient, there is one potential outcome

(eg, serious adverse event or not) that would be observed if the

patient were assigned to active treatment and one potential

outcome that would be observed if the patient were assigned to

control. The fundamental problem of causal inference is that only

one potential outcome can be observed for each patient, because

each patient is assigned to either active treatment or control, but

not both.8,9 Therefore, causal inference is a missing data problem:

the goal is to fill in the missing potential outcomes, estimating

what would have happened to each patient had he been assigned

to the opposite treatment group.

Any treatment effect estimate either implicitly or explicitly

assumes a value for each missing potential outcome. The simplest,

naive estimator for the treatment effect is the difference in mean

observed outcomes in the active treatment and control groups.

This method implicitly assumes that the missing potential

outcomes under active treatment for those assigned to control

are equal to the mean of the observed outcomes in the active

treatment group; and that the missing potential outcomes under

control for those assigned to active treatment are equal to the

mean of the observed outcomes in the control group.

The use of the observed overall treatment group means to

estimate the missing potential outcomes is justified if treatment is

assigned completely at random. Otherwise, the missing potential

outcomes must be estimated in a way that takes into account the

decision-making process for assigning active treatment versus

control.

Assignment Mechanism and Propensity Scores

The assignment mechanism is the decision-making process

used to allocate some patients to active treatment and some to

control. The propensity score for each patient is the probability

that the patient would have been assigned to active treatment

rather than control, given his covariates. In a randomized

experiment, each patient’s propensity score is known. For example,

in a completely randomized experiment where half of the patients

are assigned to each treatment group, each patient’s propensity

score is one half. A simple comparison of the observed outcomes in

the treatment and control groups would be unbiased in this case.

In a randomized block experiment, patients are grouped

together based on their similar observed covariates, and the

probability of assignment to active treatment may be different for

patients in each block. For example, if the active treatment is

considered riskier for older patients, patients over age 65 may be

assigned to active treatment with probability 0.4, and patients

65 and under may be assigned to active treatment with probability

0.7. A simple, naive comparison of the observed outcomes in

the active treatment and control groups would be biased because

the active treatment group would contain a disproportionate

number of younger patients. To generate unbiased treatment effect

estimates, we would compare patients assigned to active treat-

ment versus control within each age group. Patients in each age

group have the same propensity score. By estimating treatment

effects within each age group, we implicitly fill in each patient’s

missing potential outcome based on the observed outcomes of

other patients in the same age group.

In an observational study, it is still true that grouping patients

with similar propensity scores leads to unbiased treatment effect

estimates. However, the probability that any particular patient

would be assigned to active treatment versus control, given his

covariate values, is unknown when treatment is assigned

nonrandomly. The researcher may be reasonably satisfied

that all covariates that could have affected the treatment

assignment decision are included in the data set. If so, we call

the assignment mechanism unconfounded, and we can estimate

the unknown propensity scores based on these observed

covariates. By comparing patients with similar estimated

propensity scores, we can design an observational study that

resembles a randomized experiment.

In the study described by Karkouti et al.,5 the decision-making

process for assigning an antifibrinolytic drug was based on known
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guidelines. Physicians at Toronto General Hospital were advised

to use aprotinin only for a subset of high-risk patients and to

use tranexamic acid otherwise. Because the guidelines

informed but did not determine treatment decisions, there is a

subset of patients who might have received either aprotinin

or tranexamic acid. This subset of patients, who had some

chance of receiving either treatment, is necessary for designing

an observational study that could lead to unbiased treatment

effect estimates. The hospital’s guidelines provide a useful

starting point for estimating the assignment mechanism and

propensity scores.

Because of the broad geographic scope of Mangano et al.,6 the

assignment mechanism is likely more complicated. The treatment

decision-making process may have functioned differently within

each of the 69 institutions included in the study.

DESIGNING AN OBSERVATIONAL STUDY

Identifying Timing of Treatment Assignment

The first step in designing an observational study is identifying

the time of the treatment assignment. In a randomized experi-

ment, it is typically easy to identify the time when each patient was

randomly assigned to active treatment or control via a coin flip, an

opened envelope, a computer, etc. Pinpointing the time of

treatment assignment in an observational study can be more

difficult. If the physician chose active treatment or control for a

particular patient, then the moment of this decision is the time of

the treatment assignment. Alternatively, the patient may have self-

selected into the active treatment or control group, and the timing

of that decision relative to other observed measures must be

identified.

The timing of the treatment assignment is important because it

allows us to distinguish pretreatment (‘‘proper’’) covariates from

posttreatment (‘‘improper’’) measurements. Proper, pretreatment

covariates are measured or could be measured before treatment is

assigned. Medical history prior to the treatment decision is a

proper covariate. Age and sex are also covariates, even if actually

recorded after the treatment decision, because age and sex could

not be affected by the treatment.

Any other information measured after treatment assignment is

an outcome. Primary outcomes may include death, blood loss,

adverse events, etc. A patient’s blood pressure the day after self-

selecting into the active treatment or control group is also an

outcome rather than a covariate, even if the effect of treatment on

this blood pressure measurement is not of interest.

An observational study design should create balance

on pretreatment covariates, because, on average, randomization

would lead to balance on pretreatment covariates in an experi-

ment. However, we should not attempt to create balance on

posttreatment measurements, because posttreatment measure-

ments could be impacted by the active treatment or control. This

distinction is crucial: misclassifying an outcome that could have

been affected by treatment as a proper covariate can mask the

treatment effect.

For example, consider a study comparing two antifibrinolytic

drugs given during cardiac surgery, where the outcome of interest

is bleeding two days after surgery (day 2). Suppose that bleeding

one day after surgery (day 1) strongly predicts bleeding on day 2.

If bleeding on day 1 is misclassified as a proper covariate, we

would group the patients by day 1 bleeding. Because of the strong

correlation between day 1 and day 2 bleeding, grouping

patients by day 1 bleeding masks the true treatment effect:

among patients with bleeding on day 1, most would have

bleeding on day 2, regardless of treatment assignment, and

among patients without bleeding on day 1, most would not have

bleeding on day 2, regardless of treatment assignment. Even if

there is a large effect of treatment versus control on both day 1 and

day 2 bleeding, erroneously conditioning on day 1 bleeding

leads to an estimate of no effect because day 1 bleeding predicts

day 2 bleeding.

Because antifibrinolytic drugs are transmitted during surgery,

the treatment decisions in the studies reported by Karkouti et al.5

and Mangano et al.6 likely took place prior to surgery. Both studies

conditioned on measurements that could have been affected by the

antifibrinolytic drug. Several of the medication indicators con-

sidered for the models generated by Mangano et al.6 are classified

as intra-operative.7,10 The propensity score model in Karkouti

et al.5 included cardiopulmonary bypass duration, which could

have been impacted by a drug transmitted at the beginning of the

surgical procedure.

Separation of Design and Analysis

The randomization protocol for an experiment is necessarily

finalized before outcomes are collected. In order to mirror a

randomized experiment, the design of an observational study

should similarly be separated from the outcome analysis. Out-

comes should be removed from the data set before study design

begins, as soon as the time of the treatment assignment has been

identified.11,12 Separating observational study design from out-

come analysis protects against actual or suspected bias on the part

of the researcher.

Identifying and Prioritizing Covariates

Before designing an observational study, and if possible

before collecting data, experts in the field should identify the

covariates that might predict the treatment decision and/or

the outcomes. Note that in order to preserve objectivity, this

discussion should take place without access to outcome data

from the current study, though previous literature may help

guide the selection of covariates. If the treatment decision may

have been influenced by a covariate that was not collected or is

otherwise not available, it will be impossible to determine whether

the treatment groups are balanced on that covariate, and the data

set may not be useful for addressing the study question. Such an

assignment mechanism is confounded, given the observed

covariates.

If all of the covariates thought to be importantly related to the

treatment decision and outcomes are available, these covariates

should be divided into priority groups. Like a randomized

experimental design, an observational study design will lead to

better balance on some covariates than others. The prioritization of

covariates serves as a guide for comparing various proposed

observational designs.

Key covariates that are often overlooked in medical

studies include date of enrollment and clinical center. Karkouti

et al.5 indicated a trend over time in the probability of receiving

aprotinin; however, as the authors point out, enrollment date was

not included as a covariate. When data is collected over a period of

time, medical advances and guideline changes can affect patient

outcomes, and it can be important to compare patients with

similar enrollment dates.

The 69 separate sites represented in the Mangano et al. study6

may have differed in ways likely to predict outcomes, including

staff training and protocols, equipment, and cultural influences.

The study design could have been improved by conditioning on the

multiple clinical centers.

C.W. Pattanayak et al. / Rev Esp Cardiol. 2011;64(10):897–903 899



Addressing Imbalance on a Single Covariate

Subclassifying on One Covariate

Subclassifying patients on a single, categorical covariate is

straightforward. For example, if an observational study includes

both men and women, and sex is expected to predict outcomes,

then the effect of active treatment versus control can be estimated

separately among men and among women. The within-sex

treatment effect estimates can be averaged together to estimate

the overall treatment effect in the population. Subclassification on

a single covariate removes the bias due to this covariate: the

missing potential outcome that would have been observed under

active treatment for a man who actually received control is

estimated using the observed outcomes for men only, rather than

the entire sample of men and women.

This approach extends in a simple way to a single, continuous

covariate. Patients could be subclassified based on age groups, for

example. Five subclasses are typically enough to reduce 90% of bias

on a single, continuous covariate.13

Often, some patients in one treatment group are unlike any of

the patients in the other treatment group on a key covariate. For

example, patients over age 65 may not have been eligible for the

active treatment, or one of the clinical centers in a multicenter

study may have prescribed the active treatment for all patients.

There is no useful information available for imputing these

patients’ missing potential outcomes: what would have happened

to patients over 65 had they been assigned active treatment, and

what would have happened to patients at the all-active-treatment

clinic had they been assigned control? Patients without counter-

parts in the opposite treatment group should be removed from the

data set, as the study cannot be designed to generate useful

estimates of the effect of treatment for these patients.

Matching on One Covariate

Many observational studies include a relatively small group of

patients who received the active treatment and a large pool

of control patients who did not receive the active treatment. The

control patients may come from a surveillance database or another

source separate from the treated group. Typically, the majority of

control patients have covariate values very different from the

treated patients’ and would not have been included if the data had

been collected for the purpose of addressing the particular research

question. In this situation, a matching control patient may be

identified for each active treatment patient based on an important

covariate, creating a matched pair design that approximates a

randomized pair experiment. Unmatched potential controls can be

discarded. The matched pair design leads to unbiased estimates of

the treatment effect for patients with covariate values similar to

those in the active treatment group. The observed outcome of each

matched control patient is used to estimate the missing potential

outcome for a matched treated patient.

Crucially, the matched pair design we describe is fundamentally

different from a case-control study (or, to avoid confusion, a ‘‘case/

noncase study’’). In a case/noncase study, a patient with a positive

outcome is paired to a patient with a negative outcome; both

patients may have received active treatment, or both may have

received the control treatment. This pairing relies on observing the

outcomes and does not parallel any randomized experimental

design. In the matched pair design we describe, a patient who

received active treatment is paired to a patient who received

the control treatment. Matching active treatment and control

patients does not require outcome data and parallels a randomized

experiment in which pairs of patients with similar observed

covariates are randomized, one to active treatment and one to

control.

Of course, in most studies, more than one covariate is

expected to be related to outcomes. Covariate balance may be

desired on age, sex, a variety of medical history indicators, etc.

Simultaneously matching or subclassifying patients on multiple

covariates quickly becomes unwieldy: with 5 age groups, 2 sexes,

and 5 binary indicators for prior medical conditions, 320 separate

subclasses would be needed. With 5 more binary indicators for

additional demographics or prior medical conditions, over 10 000

subclasses would be needed. The purpose of estimating propensity

scores is to simplify this process and create approximate balance

on many covariates at once.

Matching or Subclassifying on Estimated Propensity Scores

Though true propensity scores are unknown in observational

studies, the propensity scores can be estimated by modeling the

probability of assignment to active treatment given the observed

covariates, without access to outcomes.1 Propensity scores are

most commonly estimated via logistic regression.12 The fitted

values from the logistic regression are the estimated propensity

scores.

Just as each patient has an age and a sex, each patient has an

estimated propensity score, a single number between 0 and 1

representing the estimated probability that someone with that

patient’s covariates would have been assigned to active treatment

rather than control. By matching or subclassifying patients with

similar estimated propensity scores, approximate balance can be

created on all of the covariates included in the propensity score

model.1,14,15

The success of the propensity score model and matching or

subclassification method should be evaluated by explicitly

checking the covariate balance in the proposed design. If treated

and control patients were matched based on similar estimated

propensity scores, we can check that the matched patients have

sufficiently similar ages, medical histories, etc. If patients were

sorted by estimated propensity scores and divided into subclasses

based on estimated propensity score cutoffs, we can check that

active treatment and control patients within each subclass have

similar covariate values. The means of the observed covariates

should be approximately the same in the active treatment

and control groups after matching, or within each subclass and

when averaged across subclasses. The variances, ranges, logs,

and squares of the continuous covariates should be balanced, and

interactions between covariates should be balanced as well.

Because the outcomes are separated from the data set during

this design process, we can iterate between estimating the

propensity score, creating subclasses or matches, and checking

covariate balance. If a particular covariate is not sufficiently

balanced after the first proposed design, a revised propensity score

model might include interactions between this covariate and other

covariates, or the log or square of this covariate if it is continuous.

Choosing a particular set of subclasses or matches requires

tradeoffs: some proposed designs will achieve better balance on

certain covariates and less desirable balance on others. The

covariate priority groups should serve as a guide for comparing

possible study designs.

Five propensity score subclasses based on quintiles of the

estimated propensity scores are typically enough to reduce 90% of

bias on all of the covariates used in the propensity score model.14 If

the sample size is large or if some covariates are not sufficiently

balanced, more than 5 subclasses can be created. When the relative

active treatment and control sample sizes and initial balance are

such that matching is more appropriate than subclassification,

C.W. Pattanayak et al. / Rev Esp Cardiol. 2011;64(10):897–903900



matching each of the active treatment patients to the control

patient with the most similar estimated propensity score typically

leads to approximate covariate balance,1,15,16 but if the balance in

the proposed design is not satisfactory, the study can be restricted

to pairs of patients within a certain maximum distance of each

other on the estimated propensity score.

Importantly, a proposed observational study design should not

be evaluated based on how closely the propensity score model fits

the data or how well the propensity score model describes the

presumed true decision-making process. Estimating the propen-

sity score model is one step toward creating well-balanced

subclasses or matches, and the best propensity score model is

the one that leads to the design with the best covariate balance.

Rigorous observational study design requires limiting the study

to a well-defined sub-sample of the data in which some patients

received active treatment and some received control, as in a

randomized experiment. If the covariates included in the

propensity score model are strongly related to the treatment

assignment, some patients may have extreme estimated propen-

sity scores that are outside the range of the estimated propensity

scores of patients in the other treatment group. This situation

parallels lack of overlap on a single covariate: no information is

available to estimate the missing potential outcomes for patients

outside the range of overlapping estimated propensity scores.

Often, it is possible to determine the covariate values characteriz-

ing the patients with extreme propensity scores (for example,

perhaps men under a certain age almost always received active

treatment and therefore have high estimated propensity scores).

Patients meeting these criteria should be removed from the study.

Removing patients based on covariate values rather than

estimated propensity scores simplifies the study’s generalizability.

Because outcomes are not available during observational study

design, the proposed matches or subclasses can and should be

circulated among and approved by clinicians and other stake-

holders. Any objections to the balance on observed covariates in

the proposed design should be addressed before the outcome

analysis. This process is similar to seeking approval for a

randomized clinical trial before beginning enrollment: in the

absence of outcomes, modifying the study design cannot bias the

final treatment effect estimate.

After a design is finalized, outcomes can be analyzed. In a

matched design where patients assigned to active treatment have

been paired with patients assigned to control, the observed

outcomes in the matched treatment and control groups can be

directly compared. In a subclassified design, the observed active

treatment and control outcomes can be compared within each

subclass, and an overall estimate can be obtained by a weighted

average of the within-subclass treatment effect estimates.

THE DANGERS OF REGRESSION IN OBSERVATIONAL STUDIES

Regression, also known as covariance adjustment, is frequently

used to address covariate imbalance in observational studies.

Researchers applying regression methods often include both the

treatment indicator and the observed covariates in a model to

predict the observed outcomes. However, if covariates are not well

balanced initially, this regression adjustment is likely to rely upon

invalid assumptions and can sometimes increase instead of

decrease bias.1,17,18 Unless the outcomes can be predicted

accurately from the covariates using straight lines, and unless

the effect of treatment is the same for each patient, the estimates

for the missing potential outcomes implied by regression can be

misleading or nonsensical.

Because of the strong modeling assumptions, regression

generates treatment effect estimates even when common sense

suggests that information is insufficient. For example, even if the

oldest patient who received active treatment is aged 30, regression

software will extrapolate (usually based on a straight line) to

estimate what would have happened to an 80-year-old in the

control group, had he received active treatment.

Regression often leads to relatively narrow confidence intervals

for the treatment effect. Though a narrow interval is desirable

when the interval is expected to be centered around the true

treatment effect, regression adjustments in observational studies

often lead to deceptively small intervals around the wrong

treatment effect. The narrow intervals reflect the (typically invalid)

modeling assumptions rather than information in the data.

Regression estimates are sensitive to the relative sample sizes

of the observed active treatment and control groups. If the data

includes a relatively small set of treated patients and a large pool of

controls, the regression model will primarily be determined by the

relationship between the outcomes and the observed covariates

among control patients, even if most of these control patients were

nothing like the patients who received active treatment.

The most important flaw of regression adjustment for causal

inference in observational studies is that study design is not

separated from outcome analysis. How often does a researcher run

only one regression model? It is tempting to fish for a certain result,

fitting several models until the desired or expected answer

appears. Because outcomes and covariates are not explicitly

separated, it is also easy to ignore the timing of the treatment

assignment and include variables that are actually outcomes as

predictors in the regression model.

Regression models are sometimes appropriate as part of the

outcome analysis, after a matched or subclassified design has been

finalized. Given balance on observed covariates, the treatment

effect estimate will be approximately unbiased with or without

regression, and regression can be an effective way to produce

narrow intervals around the right answer.

PROPENSITY SCORES TO COMPARE APROTININ VERSUS
TRANEXAMIC ACID

Matching in Karkouti et al.

In Karkouti et al.,5 patients who received aprotinin rather than

tranexamic acid were more likely to be female; without a history of

unstable angina, hypertension, or diabetes mellitus; and with a

history of congestive heart failure, recent cardiac catheterization,

or atrial fibrillation, among other covariates. Karkouti et al.5

created matched pairs of aprotinin and tranexamic acid patients

using estimated propensity scores to create balance on observed

covariates.

Propensity scores were estimated with a logistic regression

model that predicted treatment status from 20 observed covari-

ates, including several interactions. (At least one of these

covariates may have been measured posttreatment.) The authors

identified tranexamic acid matches for 449 of the 586 aprotinin

patients based on similar estimated propensity scores, discarding

137 unmatched aprotinin patients who were not similar to the

tranexamic acid patients on the observed covariates.

Figure 1 shows the differences in the rates of binary, patient-

related covariates between the aprotinin and tranexamic acid

groups, before and after matching. The balance on these observed

covariates is much better after matching than before matching. In

particular, unstable angina within 30 days of surgery was less

common in the initial aprotinin group than in the initial

tranexamic acid group by approximately 30 percentage points.

However, the rates of unstable angina among matched aprotinin
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patients and among matched tranexamic acid patients are similar.

Congestive heart failure was more common in the initial aprotinin

group than in the initial tranexamic acid group by approximately

30 percentage points, but the congestive heart failure rates are

similar in the matched aprotinin and matched tranexamic acid

groups. Note also that the imbalance between the aprotinin

patients and tranexamic acid patients on presurgery heparin usage

actually increased due to matching. Selecting a final set of matches

requires prioritizing the observed covariates, and a different set of

matches could have been chosen if the imbalance on heparin usage

had been deemed unacceptable during study design.

The generalizability of the study is limited to the population of

patients with covariate values similar to the matched patients’. The

matched patients are older, more likely to have hypertension and

unstable angina, and less likely to have recent cardiac catheteriza-

tion or endocarditis. The matched patients also have higher

hemoglobin concentrations than the initial group of patients who

received aprotinin. Because the highest-risk patients who clearly

met the hospital’s criteria for aprotinin do not have many

counterparts in the tranexamic acid group, the matched aprotinin

patients are somewhat healthier than the initial aprotinin group.

Karkouti et al.5 found similar rates of transfusion and adverse

events among the matched aprotinin and tranexamic acid patients,

except that renal dysfunction occurred significantly more often in

matched aprotinin patients than in matched tranexamic acid

patients.

Regression in Mangano et al.

In Mangano et al.,6 patients with a history of congestive heart

failure, pulmonary disease, or valve disease, among other

covariates, appear to have had a higher probability of receiving

aprotinin than tranexamic acid. Rather than create matches or

subclasses based on estimated propensity scores, Mangano et al.6

fit a model to regress the observed outcomes on the estimated

propensity scores. Regressing observed outcomes on an esti-

mated propensity score is very similar to regressing observed

outcomes directly on the covariates included in the propensity

score model.1 This use of estimated propensity scores has at

times been suggested by statisticians,17 but later corrected.19

Regression on estimated propensity scores shares the disadvan-

tages of regression adjustment discussed above, and the use of

estimated propensity scores to create matches or subclasses as

part of study design rather than analysis is recommended

instead.20

Mangano et al.6 concluded that aprotinin and tranexamic acid

led to similar blood loss, but that aprotinin was associated with a

higher risk of renal failure, myocardial infarction or heart failure,

and stroke or encephalopathy.

CONCLUSIONS

Matching or subclassifying on estimated propensity scores can

lead to approximate balance on observed covariates between

active treatment and control groups in observational studies.

Critically, observational studies should be designed without access

to outcome data. By designing observational studies that parallel

randomized experiments, we can generate unbiased estimates

of treatment effects despite the nonrandom assignment of patients

to treatment groups.
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