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In clinical practice in the context of early disease detection and

prevention of common adult-onset conditions, one of the most

common problems is classification or decision-making, which is

carried out through diagnostic and/or prognostic tests. When

seeking their optimization, it is fundamental to be aware of their

accuracy and precision.

Since the completion of the Human Genome Project, the

combination of large-scale genome variation projects, such as

the HapMap and 1000 Genomes projects, together with low-cost

robust genotyping platforms and the rapid advance of DNA

sequencing technologies, has enabled genome-wide association

studies (GWAS) in large cohorts and exome- and genome-wide

sequencing studies. Consequently, there has been an exponential

increase in the abundance of individual-specific genotype data,

leading to the era of personalized medicine or precision genomics-

based medicine.1

Historically, genetic diseases were classified into those with a

Mendelian or simple inheritance caused by genetic variations with

a large effect and those with a complex inheritance caused by

the sum of genetic variations with a reduced effect. However,

currently, each individual’s overall risk of developing a common

disease is probably marked by a combination of common low-risk

genetic variants and rare high-risk genetic variants.2

GWAS have focused on identifying disease- or trait-associated

genetic variants (typically single nucleotide polymorphisms

[SNPs]), which are common in a given population (eg, minor

allele frequency > 1%). To date, GWAS have identified thousands of

loci that are associated with several complex human traits and

diseases, including cardiovascular diseases.3 Notably, many of the

loci previously associated with these complex human diseases are

highlighted by multiple low-risk SNPs.4

These data have provided numerous insights into the genes and

pathways that cause disease, but more recently there has been

increasing interest in the use of these data for disease risk

prediction.5,6 In the last decade, genomics-based precision

medicine has consistently emerged to provide effective and

tailored health care for patients, depending on their genetic

background. The inclusion of genetic risk scores (GRS), including

disease or phenotype associated SNPs, into risk modelling has

improved the accuracy of individual disease prediction,7 as

reported in an original article published by Rincón et al. in Revista

Española de Cardiologı́a.8

The main focus of the development of genetic risk models is to

achieve accurate predictive power for recognizing at-risk individ-

uals (figure 1). Most commonly these models are calculated as a

weighted sum of the number of risk alleles carried by an individual,

where the risk alleles and their effect sizes are defined by previous

GWAS.6 Therefore, the accuracy of a GRS is marked by the

efficiency of previous GWAS studies in finding genetic variants

associated with common diseases. In other words, the sounder the

foundations of the building—in our case the genetic associations

described in the GWAS studies—the more resistant our construc-

tion will be, ie, the more accurate our risk prediction estimate will

be.

Predictive performance is typically evaluated by receiver

operating characteristic (ROC) curves, in which the sensitivity

and specificity of the predictions are ranked at various cutoff

values. In the simplistic case, in which the development of any

condition or disease is to be predicted, sensitivity is given as the

fraction of the true-positive ratio among the total number of

patients with the disease. Of note, a true positive is any patient who

has the disease and has a positive result in the clinical prediction

model. Therefore, the true-positive ratio is the probability of

correctly classifying a patient. The specificity is the true-negative

ratio among the total number of patients without the disease.

Specificity is the probability of correctly classifying a healthy

individual, that is to say, the probability that a healthy person will

have a negative result. A ROC curve is a 2-dimensional graph in

which the true-positive rate (sensitivity) is represented on the

vertical axis, and the false-positive rate (1-specificity) on

the horizontal axis. Therefore, a ROC graph of a prediction model

represents the relative equilibrium between true positives and

false negatives. The area under the ROC curve is the probability of
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1885-5857/�C 2020 Sociedad Española de Cardiologı́a. Published by Elsevier España, S.L.U. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rec.2020.01.003&domain=pdf
https://doi.org/10.1016/j.rec.2020.01.003
https://doi.org/10.1016/j.rec.2019.08.006
mailto:maria.brion@usc.es
https://doi.org/10.1016/j.rec.2020.01.003


the examined model correctly identifying a case out of a randomly

chosen pair of case and control samples. Area under ROC curve

results range from 0.5 (ie, random) to 1 (ie, 100% accuracy).

GRS or polygenic risk scores (PRS), as many authors now call

them, rather than predict the presence or absence of a disease, aim

to classify the population into different risk levels (figure 1). The

threshold for considering a positive GRS depends on the balance

between the risk value marked by their own cutoff values in

combination with other risk factors and the benefits associated

with a possible therapeutic or lifestyle intervention.

It is currently believed that the genetics of nonfamilial forms of

the most common adult-onset heart diseases are mainly linked to a

combination of common variants with small effect sizes distribut-

ed throughout the genome and rare variants of moderate effect in

genes known to cause familial disease. Evidence of this has been

described in recent comprehensive genomic studies, such as an

extensive GWAS coronary artery disease study9 and a large-scale

sequencing study of type 2 diabetes mellitus.10 Therefore, the

effect of each of these common variants on an individual will be too

small to predict risk, but the combination of many of these

common variants can be used to predict risk efficiently, especially

if risk is predicted in combination with classic risk factors, such as

clinical risk factors or certain environmental exposures.

One of the first publications on the implementation of GRS

in cardiovascular diseases was the study by Morrison et al.,11 in

which the use of an 11-polymorphism score for predicting

coronary heart disease risk did not improve the predictive capacity

of classic risk factors. Since then, many PRS have been published

and validated and are especially effective in groups of patients with

highly specific phenotype. Some examples are coronary artery

disease PRS aiming to individualize the decision to initiate lifetime

statin therapy,12 or PRS to improve the prediction capacity of

patients classified as being at intermediate risk of cardiovascular

heart disease according to the Framingham scale.13

GRS applied to young adults to predict recurrent events after

myocardial infarction, as described by Rincón et al.,8 should be

validated in a more extensive sample, since positive results are

mainly seen in young patients without diabetes, but the

observation is based on a small number of patients. Studies like

this one open doors to the implementation of PRS in clinical

prediction models but they must always be validated and based on

extensive data.

Last but not least, we must not forget the uncertainty in the

estimation of the effect size associated with each common variant

included in a genetic score, when the PRS is used to estimate

the risk in other populations beyond the population studied in the

GWAS. Since most of the GWAS were executed in European

ancestry populations and genetic diversity among populations

with different ancestry is well known, we must take special

care when extending the applicability of PRS to all populations

worldwide. Estimates are not transferable between populations,

and ultimately the PRS is applied to an individual patient with a

given geographical origin and with a characteristic genetic load,

but with the same rights to health care.14

Although the number of studies with polygenic risk estimates

has grown exponentially in the last 5 years, large-scale studies

should be carried out to demonstrate the usefulness of polygenic

risk estimation, not only in the cardiovascular field but also in

other areas of human health. In this regard, the European action of

the One Million Genomes Initiative, aiming to have this number of

genomes linked to clinical data sequenced for 2022, with Spain a

Signatory Member State, is perhaps the most promising project.15

Whole-genome data at this scale have the potential to make rapid

progress in precision medicine and risk prediction estimates.
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Figure 1. Risk score distribution. Distribution of the genetic risk ranges in a population according to the accumulation of risk alleles. PRS, polygenic risk score.
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