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INTRODUCTION

Artificial intelligence (AI) has proven to be an example of a

general-purpose technological innovation, with a ubiquitous

presence in communications, marketing, the economy, and the

information technology industry. Reflecting technological

advances, increased availability of data, and open source codes

for algorithms, AI solutions have been steadily improving, while

bringing unprecedented benefits—changing workflows, improving

efficiency, refining data handling, and guiding services to the target

users. Interest in integrating AI in various medical subfields has

been huge, ranging from dermatology, oncology, ophthalmology,

to cardiology.1

In cardiology, the need for novel solutions is reflected by data.

Cardiovascular diseases have steadily maintained their position

as a leading cause of morbidity in Europe, with hospitalization

rates increasing from the year 2000,2 while at the same time,

information sources have dramatically increased, leading to an

explosion of the data generated. Therefore, the burden of patient

management is immense, with a high need for appropriate, highly-

informative, time- and cost-efficient data analysis. AI can

potentially address opportunities for optimization and personali-

zation throughout the imaging workflow, from the choice of

appropriate imaging modality up to the prediction of outcomes.

Whereas previous reviews have successfully summarized the

technological aspects and application of AI in different imaging
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A B S T R A C T

Cardiac imaging is a crucial component in the management of patients with heart disease, and as such it

influences multiple, inter-related parts of the clinical workflow: physician-patient contact, image

acquisition, image pre- and postprocessing, study reporting, diagnostics and outcome predictions,

medical interventions, and, finally, knowledge-building through clinical research. With the gradual and

ubiquitous infiltration of artificial intelligence into cardiology, it has become clear that, when used

appropriately, it will influence and potentially improve—through automation, standardization and data

integration—all components of the clinical workflow. This review aims to present a comprehensive view

of full integration of artificial intelligence into the standard clinical patient management—with a focus

on cardiac imaging, but applicable to all information handling—and to discuss current barriers that

remain to be overcome before its widespread implementation and integration.
�C 2020 Sociedad Española de Cardiologı́a. Published by Elsevier España, S.L.U. All rights reserved.

La integración de la inteligencia artificial en el abordaje clı́nico del paciente:
enfoque en la imagen cardiaca
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R E S U M E N

La imagen cardiaca es un componente crucial en el abordaje de los pacientes cardiacos, y como tal influye

en múltiples partes interrelacionadas del flujo de trabajo clı́nico: el contacto médico-paciente, la

adquisición de imagen, el preprocesamiento y posprocesamiento de imágenes, los informes de estudios,

el diagnóstico y el pronóstico, las intervenciones médicas y, por último, el desarrollo del conocimiento a

través de la investigación clı́nica. La incesante infiltración de la inteligencia artificial en cardiologı́a pone

de manifiesto que, usada apropiadamente, influirá y puede mejorar —a través de la automatización, la

estandarización y la integración de datos— todos los componentes del flujo de trabajo clı́nico. El objetivo

de esta revisión es presentar una visión holı́stica de cómo se integra la inteligencia artificial en el

abordaje clı́nico del paciente, con especial foco en la imagen cardiaca, pero aplicable a toda la gestión de

información, y discutir las barreras actuales que aún deben superarse para su implementación

generalizada.
�C 2020 Sociedad Española de Cardiologı́a. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.
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modalities,1,3–9 the aim of the current review is to present a view of

the comprehensive integration of AI into standard clinical patient

management, with a focus on cardiac imaging. We will also discuss

the obstacles to be overcome before the widespread integration of

AI and clinical concerns, as well as technical and ethical challenges.

MANAGEMENT OF CARDIAC PATIENTS AND CARDIAC IMAGING.
A MULTITUDE OF OPPORTUNITIES FOR AI

Comprehensive management of patients with cardiac disease

necessarily includes cardiac information management, with the

data being used to guide diagnosis, assess risk, guide treatment or

interventions, and decide on follow-up. Here, cardiac imaging, for

example, is a crucial component for cardiac patient management,

and as such it is one of multiple, interrelated parts of the clinical

workflow: physician-patient communication, image acquisition,

imaging data pre- and postprocessing, study reporting, data

interpretation, diagnostics and outcome predictions, medical

interventions, and, finally, knowledge-building through clinical

research. AI has strong potential to improve each part of the patient

management workflow (figure 1). The schematic in figure 2 shows

an overview of AI fields and subfields, together with a selection of

algorithms.

Physician-patient contact: data collection, triaging, and
appropriate imaging use

With an increasing clerical burden and challenges to the

usability of electronic health care records, AI provides opportu-

nities to standardize and improve efficiency in data collection and

the quality of communication (figure 3A), with the aim of reducing

menial and time-consuming tasks and allowing a focus on patient-

physician interactions. Analytical methods of speech and text

analysis could improve information transfer by guiding commu-

nication (providing feedback on delivery of information and clarity

of content), standardizing medical history taking, and informing

patients in accessible, easy to understand language.10 Patients’

verbal responses, facial expressions, and tone of voice could be

analyzed to guide interaction, whether on-site or using telemedi-

cine.11 Additionally, communication can now take place over

electronic patient portals, where AI-based tools, such as natural

language processing (NLP) and machine learning (ML), can

categorize patient free-text messages, with the aim of organizing

triage and automating responses for urgent cardiovascular medical

issues.12

In the ambulatory setting, risk assessment and triaging are

conventionally achieved through decision support systems (DSS)

where AI-based feature extraction from images or clinical reports

could be integrated to automate input and increase efficiency.13

Examples are the possibility of automatically creating an accurate

list of patient diagnoses from clinical notes,14 or identifying risk

factors from electronic health records, such as the risk associated

with sudden cardiac death in patients with hypertrophic

cardiomyopathy.15 Furthermore, ML integration can advance risk

assessment in the ambulatory setting of specific patient groups. A

boosted decision-tree algorithm was used in a cohort of 5822 heart

failure patients to assess mortality risk.16 The model was

externally validated, yielding a similarly satisfying performance

and thus providing proof of generalizability in the heart failure

disease spectrum. An efficient, widely applicable risk model could

help prompt identification and triaging toward further investiga-

tion and advanced care for appropriately selected patients.

An integrated AI/DSS algorithm could also help in choosing the

appropriate imaging modality to provide the greatest diagnostic

and prognostic information in the least amount of time, while

maximizing patient safety and minimizing additional testing

costs.17 In a recent multicenter study, an automated point-of-order

DSS, based on decision tree algorithms, was demonstrated to

rapidly determine the appropriateness of cardiac imaging tests for

the assessment of coronary artery disease (CAD).18 Another study

demonstrated an NLP-based approach for computed tomography

(CT) and cardiac magnetic resonance (CMR) protocol assignment.19

As shown by these studies, point-of-order AI/DSS could be an

efficient tool to guide patient imaging decisions and maximize

efficiency for both patients and health care providers.

Abbreviations

AI: artificial intelligence

CMR: cardiac magnetic resonance

CNN: convolutional neural networks

CT: computed tomography

DL: deep learning

DSS: decision support system

ML: machine learning

NLP: natural language processing

Figure 1. A scheme showing the potential targets for artificial intelligence integration in a cardiac patient management workflow.
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Cardiac image acquisition: automation, time-efficiency, and
safety

Once the cardiac imaging modality has been chosen, AI can

improve the process of image acquisition (figure 3B). In

echocardiography, convolutional neural networks (CNNs)—a type

of deep learning (DL) well-suited for image-oriented tasks—can

automate echocardiographic image acquisition by guiding

the motion of the probe toward optimal positions, such as the

4-chamber view, enabling capture of diagnostic echo images

after minimal training.20 The US Food and Drug Administration

recently approved the first cardiac software using AI to guide

ultrasound image acquisition.21 The implications include

improved staff education, wider applicability of imaging in

low-expertise centers, fewer imaging artefacts, and higher

reproducibility of exams.

Novel technology can also improve CMR and CT acquisition—

CMR imaging suffers from long acquisition times due to high

temporal and spatial resolution. Because of their ability to use large

data sets to learn key reconstruction parameters, ML approaches,

Figure 2. A schematic showing a selection of fields and sub-fields in the topic of artificial intelligence.

Figure 3. A pipeline showing various parts of the cardiac imaging workflow. Artificial intelligence (AI) can be integrated throughout the pipeline with to goal of

achieving automation, standardization and data integration, as well as improved efficiency and accuracy.
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particularly DL, have been recently proposed to accelerate CMR

scan times.22 Likewise, generative adversarial networks have been

applied to synthesize cine-like CMR images from real-time CMR

sequences (ie, sequences used as an alternative when patients are

unable to hold their breath or have arrhythmias during scanning),

resulting in improved image quality, with clearer images and

sharper anatomical distinction.23 CT has also benefited from

promising advances from ML aimed at speeding up reconstruction

times and reducing radiation dose. DL methods have been applied

to learning with low-dose CT images and to reconstruct them to

routine-dose CT images, synthesize contrast CT images from

noncontrast images, reduce noise in low-dose CT scans, enable

lower-dose CT and sparse-sampling CT, and reduce metal

artefacts.24 These examples of AI contributions to image acquisi-

tion will prove valuable in medical education, time-efficiency,

cost-reduction, and patient safety.

Image processing: automation and reproducibility of pre- and
postprocessing

After acquisition, raw image data intended for analysis is

commonly heterogeneous—with variable image quality, acquired

with different settings and with machines from different vendors.

Therefore, preprocessing (including anonymization, normaliza-

tion, and handling of missing data) is a crucial part of the imaging

pipeline (figure 3C). Characteristics such as image contrast,

brightness and resolution affect the robustness and accuracy of

image analysis. To name a few examples, normalization can

include adjustment and standardization of image size,25–29

applying filters to images to remove noise,25 and enhancing

contrast to help in the process of feature extraction.30 To prepare

data for DL, echocardiographic videos can be converted to

multidimensional numeric arrays of pixel intensities, with

dimensions representing time, coordinates in space, and encoding

of color information.31 Normalization of CT images can also be

achieved through a DL, eg, U-Net based, strategy.32 Furthermore,

DL has recently addressed more challenging tasks, with CNNs

screening for motion artefacts or erroneous orientation of the 4-

chamber view in the first step of the image analysis pipeline.33,34

ML can also provide solutions for missing data, with innovative

imputation methods using cardiac imaging data.35

Overall, preprocessing approaches accomplish uniformization

of imaging data, enabling improved postprocessing and feature

extraction, in which various feature selection strategies can be

employed to determine the most interesting features of the

dataset. However, regardless of imaging modality, data processing

to extract clinical variables (ie, volumes, wall thickness, deforma-

tion, valve morphology) is notoriously time-consuming, meticu-

lous, and prone to interoperator differences and error. Image

interpretation is highly experience- and observer-dependent,

resulting in unsatisfactory measurement variability. This can

prove problematic for longitudinal patient follow-up. This is the

case, for example, in cardio-oncology or heart failure, where

reproducible assessment of cardiac function is essential, or for

multicenter, multiexpert datasets, where variability in measure-

ments biases the analysis. Automation of image analysis through

ML can therefore be beneficial by saving time and by increasing

accuracy, reproducibility, and standardization33,36–38 (figure 3D).

Identifying cardiac views is the crucial first step in image

analysis. When a cardiologist recognizes the cardiac view, view-

specific cardiac structures can be segmented, measured and

quantified to assess cardiac function and remodelling. View

classification has lately been approached mainly through DL

methods such as CNNs, incorporating both spatial and temporal

information contained in the echo loops, and achieving a high

accuracy rate of 92.1%.26 More advanced CNN models can classify

full standard transthoracic echocardiograms (B-mode, M-mode,

Doppler, both still images and videos) from patients with a range of

pathologies, technical settings, and image quality.27 By avoiding

idealized training subsets, such models show their potential

applicability to the clinical setting, with high accuracy of 97.8%.

Following view recognition, image segmentation is the process

of partitioning an image into its constituent parts (eg, each part

corresponding to a distinct cardiac structure) to quantify structure

and function. In 2-dimensional echocardiography, ML-based fully

automatized left ventricular (LV) volume, ejection fraction and

longitudinal strain measurements have been shown to be rapid,

reproducible, and in good agreement with manual measure-

ments.39 Furthermore, an automated image interpretation pipeline

has been shown to be feasible, incorporating view identification,

image segmentation, and quantification of structure and func-

tion.31 Three-dimensional (3D) echocardiography could offer a

more reproducible quantification of cardiac chambers but requires

cumbersome manual processing, heavily burdening workflow and

applicability. An automated adaptive analytics algorithm for

simultaneous quantification of ventricular and atrial volumes

proved to be reproducible and comparable with manual segmen-

tations and CMR values, but the technology is applicable only in

patients with sufficient image quality.40 Feasible solutions for

automated 3D right ventricle assessment have also been demon-

strated.36 Additionally, when considering valve assessment,

automated 3D transesophageal echocardiography mitral valve

geometry quantification showed a good correlation with manual

measurements and a significant reduction in measurement time,

although, again, there was a need for high-quality images.41 While

challenges in automating 3D dataset analysis are still prominent,

current studies demonstrate an incremental shift, showing

potential to improve workflow limitations in the clinical setting.

A comprehensive review of automated quantification in echocar-

diography is available.5

Similar development in automation has been seen in CMR. Fully

automated quantification of LV mass, biventricular volumes and

ejection fraction has been demonstrated in a heterogeneous CMR

dataset, showing feasible segmentations and similar results to

manual quantification, albeit demonstrating lower agreement in

severely altered anatomy and reduced image quality.38 Automated

CNN-based CMR-image segmentation and quantification has been

shown to be faster, than the most precise human techniques and to

have similar precision, even when challenged with real-world,

multicenter, multidisease scan-rescan data to assess measuring

precision.42 Furthermore, integration of quality control algorithms,

detecting erroneous outputs, has been demonstrated in a cohort of

healthy volunteers and patients with a wide variety of heart

diseases.33 Cardiac function and tissue characterization can also be

addressed; fully automated phase-contrast CMR aortic flow

quantification showed a more rapid, feasible alternative for large

CMR dataset segmentations and analysis,37 while semiautomated

quantification43 and synthetic data approaches44 have been

suggested to automate late gadolinium enhancement segmenta-

tion. Synthetic data have also been used to generate CMR images

based on a reference biomechanical model of the LV to create a

‘‘ground truth’’ for testing the robustness of segmentation and

registration methods.45

Diagnostics and prognosis: data integration and advanced
phenotyping

Following the image analysis and processing, the ensuing steps

include integration of the derived measures with other data

sources, resulting a comprehensive representation of the patient in
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focus. Traditional methods of phenotyping are challenged by

unstandardized quantification, geometric assumptions, high ob-

server variability, limited set of parameters, and a tendency to

discretize continuous phenogroups. As shown in figure 4, the

combination of information-rich imaging (ie, deformation imag-

ing, 3D datasets, tissue characterization, 4-dimensional flow etc.)

and ML facilitated the shift from one dimensional descriptors of

cardiac function and structure to high-resolution, multi-paramet-

ric phenotyping.4 A relevant message learned through such

advanced approaches is that cardiac diseases commonly represent

a disease spectrum, where a binary classification into diseased or

healthy does not reflect the underlying complexity. A recent

unsupervised ML approach, using LV longitudinal myocardial

velocity patterns, categorized hypertensive and breathless patients

into a transition zone of the heart failure with preserved ejection

fraction spectrum, demonstrating potential pitfalls of conventional

clinical diagnostic algorithms, as well as the broad spectrum of the

heterogeneous heart failure with preserved ejection fraction

syndrome.46 Moreover, it is precisely the heterogeneity of heart

failure, and the nonlinearity of diastolic function, that can present

an appropriate challenge for ML, especially unsupervised

approaches, which can extract hidden patterns in data and cluster

patients regardless of a priori knowledge or known clinical

labels.47,48 Data from the same patient, both from rest and

exercise echocardiography, can be integrated using ML to create a

spatiotemporal-rest-exercise representations of LV function to

determine heart failure with preserved ejection fraction.48 Finally,

the strong potential of data integration and phenotyping through

AI is best illustrated through novel approaches combining

knowledge from imaging, genomics and proteomics through the

combination of high-throughput DNA sequencing combined with

ML methods to tackle challenges of scalability and high-

dimensionality of data.4 As a notable example, polygenic risk

scores of LV phenotypes have been shown predictive of heart

failure independently of clinical risk factors, and CMR derived

phenotypes highly heritable, showing that LV image-derived

phenotypes and remodelling are related to the underlying genetic

basis.49 Moreover, the combination of high-resolution phenotyp-

ing and machine-based data analysis showed that titin truncating

variants, previously thought of as irrelevant in the general

population, are associated with higher LV volumes in CMR analysis

and eccentric remodelling.50 Proteomics have also been used to

identify CAD risk –predicting both high-risk plaques and the

absence of CAD on coronary CT angiography in patients with

suspected disease.51

The advances in data integration and phenotyping are

inherently linked to significant improvement in diagnostics and

outcome prediction (figure 3E), though most studies using AI are

still observational, single-center, and can only be considered

hypothesis generating. Nevertheless, AI has been used on imaging

data to diagnose myocardial infarction, heart failure, CAD,

atherosclerosis, cardiomyopathies, and valvular heart disease

Figure 4. A scheme showing the process of artificial intelligence (AI) mediated data integration leading to improved patient phenotyping, personalized treatment,

and clinical research.
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among others. DL models demonstrated comparable results to

cardiologists in detecting the presence and location of ischemic

regional wall motion abnormalities,52 or high accuracy of detection

(AUC, 0.94) of chronic myocardial infarction in noncontrast

enhanced cine CMR images, compared with late gadolinium

enhancement CMR.53 Results have also been seen in CT studies,

where texture analysis was more objective and reproducible in

diagnosing chronic myocardial infarction when compared with

visual assessment.54 In heart failure, unsupervised ML has been

used on a large trial dataset to identify phenogroups with distinct

clinical characteristics related to outcome,55 or to identify patients

with heart failure with preserved ejection fraction through

spatiotemporal variations of LV strain rate during rest and exercise

echocardiographic data.48 The ability of cardiac imaging to avoid

unnecessary invasive procedures presents a clear target in CAD. DL

applications have shown successful identification of obstructive

CAD from single-photon emission CT perfusion imaging.56 In

recent multicentre studies, a gradient boosting classifier showed

that the addition of resting CT perfusion to CT angiography can

improve prediction of significant ischemia in coronary stenosis,57

while an on-site, ML-based, CT fractional flow reserve algorithm

improved the performance of CT angiography by reclassifying

hemodynamically nonsignificant stenosis, performing as well as

computational fluid dynamic approaches.58 Calcification quantifi-

cation and plaque characterization have also been increasingly

explored, demonstrating that radiomic features may be able to

discriminate napkin-ring sign plaques,59 a challenging task due to

its qualitative nature. In valve disease, support vector machines

and linear discriminant analysis have been used to separate

patients according to the severity of mitral regurgitation, quanti-

fied based on textural features extracted from three echocardio-

graphic B-mode views, with > 99% accuracy for each of the

qualitative levels of regurgitation.25 Likewise, discriminating

different cardiomyopathies has been a sensible target for the

advanced phenotyping capabilities of AI. Radiomic texture analysis

on CMR T1 images, and a support vector machine classifier, have

been applied to discriminate between hypertensive heart disease

and hypertrophic cardiomyopathy.29 An ensemble ML model used

speckle-tracking echocardiographic data for automated discrimi-

nation of pathological and physiological patterns of remodelling

seen in hypertrophic cardiomyopathy and athlete’s hearts (AUC,

0.80).60 A detailed overview of diagnostic applications of AI in

cardiac imaging is found in Al’Aref et al.6 and Martin-Isla et al.8

Study reporting

After full data analysis is performed, an AI-fuelled, rapid,

precise, and reproducible reporting of findings is beneficial for

efficient patient management (figure 3F). Here, automatic recog-

nition and translation of voice into text –speech recognition– was

one of the first examples of AI integration into the imaging

workflow. Despite unresolved challenges, application in radiology

departments has already shown benefits in reducing reporting

time and costs, as well as increasing productivity.61 Furthermore,

AI could serve as a ‘‘fail-proof’’ for study reporting –echocardiog-

raphy reports can be analysed by artificial neural networks to

predict patient mortality and hospital readmissions for heart

failure patients.62 NLP can help clinical interpretation of reports

and report drafting by assessing posttest risk after myocardial

perfusion imaging,63 where underestimation of ischemia in

reporting has been previously noted. Another crucial challenge

is the failure to follow-up imaging recommendations, potentially

leading to patient health deterioration, failed advanced treatment

and rise of costs. Scalable and automated follow-up detection NLP

algorithms can therefore be useful to determine adherence rates

for follow-up imaging and define patients who may benefit most

from potential engagement, with the aim of mitigating risk.64

Medical interventions: guidance from AI and imaging

AI fields, including ML, NLP, computer vision and robotics, have

generated high interest to address challenges in the field of

interventional cardiology with the aim of improving real-time

decision making, streamlining workflows in the catheterization

laboratory and standardizing catheter based procedures through

advanced robotics.65 A clear example can be found in the imaging

solutions for transcatheter aortic valve replacement procedure

planning and valve choice. In transcatheter aortic valve replace-

ment, CT is the current standard for the determination of prothesis

sizing, however, automated 3D transoesophageal echocardiogra-

phy software can allow modelling and reproducible quantification

of aortic annular and root dimensions with high correlation of

measurements with CT.66 Furthermore, post transcatheter aortic

valve replacement, there is a lack of a solid reference method to

assess paravalvular regurgitation which can be addressed using an

ultrasound simulation-based pipeline.67 In the field of heart

failure, unsupervised ML has been applied to integrate whole-cycle

echocardiographic data and heterogeneous clinical data to predict

response to cardiac resynchronization therapy.68 DSS and risk

assessment after hospital discharge have also seen advances –a

boosted ensemble algorithm showed greater prognostic value of

predicting CAD than current integrated coronary CT angiography

risk scores by maximizing usage of stenosis and plaque composi-

tion information.69 Moreover, a ML integration of clinical and CT

angiography data predicted 5-year all-cause mortality (AUC, 0.79),

performing significantly better than existing metrics. Similar

approaches have been proposed in prediction of 3-year major

adverse cardiac events in patients undergoing single-photon

emission CT myocardial perfusion imaging, where ML integration

of clinical, stress and imaging variables was found to have a

superior predictive accuracy compared with visual or automated

perfusion assessment in isolation.70

Clinical research: data availability and fully automated data
analysis

The described AI integration and automation of analysis can

advance patient care in various clinical settings; however,

integration also bears relevant implications for clinical research

(figure 1, figure 4). The quality and size of the available datasets

determines the quality of the ML-derived results. A major obstacle

here is the need for high-quality expert annotations in imaging

datasets, as labelling carries inherent uncertainties, biases and

assumptions. Recently, self-supervised methods have been sug-

gested to tackle this problem due to their ability to explore data

that has not been labelled.71 Additionally, synthetic data, with

realistic properties and imaging modality specific noise textures,

can help bypass the problem by being used in the training

procedure of the ML algorithms in addition to the real clinical data.

As an example, a generative adversarial network has been used for

the synthesis of realistic CT images based on body phantoms with

the goal of increasing the dataset size to improve training and

performance of vessel segmentation networks.72 Furthermore,

many ML algorithms are limited by a scarcity of large and

heterogeneous datasets –most available studies are confined to

single-center cohorts or cohorts from specific populations,

however, ML has shown capacity to integrate data from different

datasets to achieve a more robust analysis.73 In addition, there is

increasing initiative to expand the availability of imaging

databases, biobanks, bioresources and registries for ML training
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–an example would be the UK Biobank initiative or the REFINE-

SPECT (REgistry of Fast Myocardial Perfusion Imaging with NExt

generation SPECT) registry.8 Nevertheless, data sharing and a lack

of efficient methodologies to satisfy all involved stakeholders

remains a common challenge. Next-generation methods for

federated, decentralized ML have been proposed to replace the

current paradigm of data sharing and centralized storage –

algorithms could be distributed to sites or devices where data is

kept to perform tasks locally, returning results to the central

repository to update the main algorithm.74 Ideas to integrate

solutions from the financial sector, such as blockchain technology,

have also been proposed to decentralized databases, secure

traceable and scalable data exchange, and integrate AI tools that

are blockchain-enabled, distributed, and tied to a system of

incentives that flow to the owner of each data on the basis of its

value.75

Finally, when datasets are available, high-quality analysis needs

to be performed. Recent reports envision a fully automated

analysis - a CNN network, using echocardiographic images, was

used to identify local cardiac structures, perform automated

measurements of structure and function, and predict phenotypes

that modify cardiovascular risk - based solely on imaging data.28

Another recent study performed a retrospective analysis on a 10-

year echo database from diverse vendors, showing that CNN

algorithms can support scalable, low-cost analysis within the

health care system in a reasonable timeframe.31 Importantly, the

application of these automated processing tools warrants quality

control. Manual inspection of each segmentation is not feasible in

larger cohorts, therefore approaches such as reverse classification

accuracy show potential for accurate and fully automatic quality

control, as shown on a large number of CMR cases from the UK

Biobank study.76 Moreover, parameters calculated from the

automated segmentations, such as stroke volume of the left and

right ventricle, can be tracked, and exams with disproportionate

stroke volumes flagged. Additional ML algorithms, such as support

vector machines, can be used to classify outputs of ML algorithms

as abnormal or normal.33 Lastly, research data is not only stored in

images. Management of cardiac patients produces an immense

stream of clinical data, most commonly in nonstandardized,

unstructured reports, not feasible for immediate analysis. As

discussed earlier, NLP algorithms can play a crucial role, extracting

cardiac concepts from multiple center-derived free-text and semi-

structured reports. The promise of such technologies represents an

important link in automation of database analysis for clinical

research.

CLINICAL, TECHNICAL AND ETHICAL CONCERNS OF
INTEGRATING AI INTO PATIENT MANAGEMENT

Parallel to all potential benefits, continuous concerns are

present regarding overreliance and dependence on the capabilities

of automation, with fear that they might eventually result in

clinician deskilling - manual dexterity in echocardiography or loss

of skill to analyse and independently interpret cardiac imaging

studies. However, appropriate application of AI in different parts of

the clinical workflow aim at enriching, not replacing, current

clinical practice. Communication and data collection during

ambulatory visits can remain unchanged in their essence, but

become more efficient, opening up time for clinician-patient

interaction. Structural or functional quantification can become

faster and standardized through automation, freeing up consider-

able time, but always with the option to review and adjust

segmentations. Furthermore, contrary to deskilling, AI can also be

used for educational purposes - acquisition guidance can train less-

experienced operators, transfer learning frameworks teach cardiac

anatomy,77 and DL solutions serve as a learning tool as they can

achieve better results than resident readers when assessing wall

motion abnormalities.52 An additional concern fears the dismissal

of the holistic approach to patient care, predicting that focus will

shift toward data features, as opposed to the patient complexity

behind the data. However, it can be argued that AI might actually

expand the horizon of the holistic approach through comprehen-

sive multimodality data integration - integrating clinical assess-

ment data, imaging data, molecular and genetic data, as well as

electronic health records, as discussed previously. Such improve-

ments have paved the way toward the concept of the ‘‘digital twin’’

–a virtual tool that integrates clinical data acquired over time to

create a dynamic and comprehensive representation patient at

hand78– streamlining an unprecedented and personalized ap-

proach to patient care.

To achieve full potential of AI, generalizability and interpret-

ability will have to be rigorously addressed. As opposed to the

promise of AI driving a personalized approach to patient care, the

generalization seen in traditional cohorts or randomized control

studies (ie, population-based findings used to treat individuals) is

also a problem embedded in AI solutions. An algorithm trained on

biased data (images from a local cohort or a specific vendor), might

not perform well in a real-world setting, hence, the correct

interpretation of a case with a pathology/phenotype outside the

training data is not feasible. Transfer learning, through the

combination of CNN-generative adversarial network architecture,

has been used to improve the performance of DL algorithms when

applied to data from alternate vendors, providing a solution to the

common challenge of applying an algorithm to multicentre,

multivendor data.79 Combined with internal validation (ie,

multiple split-sample regimens like x-fold validation), multicentre

and external (ie, prediction in a new, unrelated dataset) validation

is crucial in demonstrating generalizability. Furthermore, public

availability of the data and algorithms, as advocated through open

data and open source initiatives, and the replication by other

research groups, could strengthen the trust in the model, although

such approaches are limited by commercial interests. Comprehen-

sive quality control of ML algorithms can be achieved through tools

that enable performance measurement, monitoring, and feedback

and accountability mechanisms.80

In a generalizable, integrated AI algorithm, the need for tools to

explore the reasoning behind algorithmic outputs will always be

paramount for interpretability and crucial for building trust and

adoptability. When available, an intuitive and motivated explana-

tion of the decision process should be presented, backed-up by a

highlight of important data to provide pathophysiological inter-

pretation and enable understanding on how each of the numerous

variables contributed to the final output, such as velocity data

explaining alterations in diastolic and systolic function in separate

patient clusters.46 In situations where the applied algorithm is a

black box, novel methodologies can help by ‘‘getting inside the

box’’ - occlusion testing experiments include testing accuracy of

classification after masking different parts of the input image,

while saliency maps show the pixels in the image weighted most

heavily in the neural network classification decision.27,28 Never-

theless, decisions made by more complex algorithms can currently

be challenging to interpret, making potential integration into the

clinical setting an ethical challenge.

Besides many ethical considerations regarding the use of

patient medical data, AI encompasses a wider scope. Many ML

algorithms are developed and validated, on advanced and

expensive modalities –commonly performed in high-income

countries and high-level centers.81 Patients from low- or middle-

income countries are often underrepresented. Therefore, the

question is if AI can aid in resolving health inequalities, or result

in the deepening of existing ones. However, when appropriately
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used, AI can help democratize health care, by reducing costs and

bringing imaging to regions with limited specialized expertise. For

example, some reports demonstrate DL input can consist of

reduced size medical images, reaching 96-99% savings in files size

compared with images standardly used in clinical assessment.27

Implications include less storage capacity in resource-poor

regions, easier data sharing, and use of older scanners with lower

resolution. However, similar to past examples of general-purpose

technologies –electricity or computers– the full effects of AI in

health care will not be realized until waves of complementary

innovations are developed and implemented.82 Likewise, implan-

tation will strongly depend on the attitude of health care providers

and the public toward novel technologies. As an example, attitudes

toward data sharing for AI development highlight the importance

of trust in institutions and clear communication of potential

benefits.83 Moreover, recent studies revealed patient resistance to

AI solutions –patient preference is highly toward human interac-

tion rather than automated, even if it means lower performance.84

Focusing on the uniqueness of each patient in care delivery,

perceived personalization of medical care by increasing the

amount of integrated user information or incorporating cues

indicating a patient uniqueness could all be highly relevant for the

receptiveness to AI.84

CONCLUSION

After a steady infiltration into health care, and a robust set of

literature demonstrating proofs-of-concept and potential benefits

of AI implementation in cardiology, the vision of comprehensive

integration of AI into the standard cardiac patient management

and workflow of cardiac information is becoming a palpable

reality. Regardless of many challenges to face –technical questions,

challenges of implementation, appropriateness for specific tasks,

and ethical dilemmas– AI can inevitably bring value to patient care.

With all the positive consequences AI will offer, the most valuable

one could be the return of time into the hands of clinicians,

resulting in a shift of focus back to the essential, and most valuable,

physician-patient relationship –but this time, through an unprec-

edented, efficient and personalized approach.
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