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A B S T R A C T

Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart defect. Early surgical repair has

dramatically improved the outcome of this condition. However, despite the success of contemporary

approaches with early complete repair, these are far from being curative and late complications are

frequent. The most common complication is right ventricle outflow tract (RVOT) dysfunction, affecting

most patients in the form of pulmonary regurgitation, pulmonary stenosis, or both, and can lead to

development of symptoms of exercise intolerance, arrhythmias, and sudden cardiac death. Optimal

timing of restoration of RVOT functionality in asymptomatic patients with RVOT dysfunction after TOF

repair is still a matter of debate. Percutaneous pulmonary valve implantation, introduced almost

2 decades ago, has become a major game-changer in the treatment of RVOT dysfunction. In this article

we review the pathophysiology, the current indications, and treatment options for RVOT dysfunction in

patients after TOF repair with a focus on the role of percutaneous pulmonary valve implantation in the

therapeutic approach to these patients.
�C 2018 Sociedad Española de Cardiologı́a. Published by Elsevier España, S.L.U. All rights reserved.
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R E S U M E N

La tetralogı́a de Fallot (TDF) es la cardiopatı́a congénita cianótica más frecuente. La reparación quirúrgica

temprana ha mejorado radicalmente su pronóstico. Sin embargo, a pesar del éxito de los abordajes

quirúrgicos contemporáneos con reparación completa a edades tempranas, estos distan de ser curativos

y las complicaciones tardı́as son frecuentes. La disfunción del tracto de salida del ventrı́culo derecho

(TSVD) es la complicación más frecuente, afecta a la mayorı́a de los pacientes en forma de insuficiencia

pulmonar, estenosis pulmonar o ambas y puede llevar a la aparición de sı́ntomas de intolerancia al

ejercicio, arritmias o muerte súbita. El momento óptimo para restaurar la función del TSVD sigue siendo

objeto de debate. El implante percutáneo de válvula pulmonar, introducido hace casi 2 décadas, ha

supuesto un punto de inflexión en el tratamiento de la disfunción del TSVD. En este artı́culo se revisa la

fisiopatologı́a, las actuales indicaciones y opciones terapéuticas para la disfunción del TSVD en pacientes

con TDF reparada, con especial énfasis en el papel del implante percutáneo de válvula pulmonar en el

abordaje terapéutico de estos pacientes.
�C 2018 Sociedad Española de Cardiologı́a. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.
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INTRODUCTION

The overall prevalence of congenital heart disease in adults is

estimated to be of 3000 per million.1 Tetralogy of Fallot (TOF) is the

most common cyanotic congenital heart defect, accounting for 10%

of all congenital cardiac malformations.2 Early surgical repair

has dramatically improved the outcome of this condition, from a

survival rate to adulthood < 25% without surgery3 to a survival of

approximately 90% at 30 years in patients undergoing complete

repair surgery in infancy.4 The therapeutic approaches have

evolved from initial surgical palliation with Blalock-Taussig

shunts5 and the first described intracardiac repair,6 an era of

staged repair with shunt palliation prior to intracardiac repair, and

finally an approach of direct complete repair early in infancy in the

past 2 decades. Surgical techniques for complete repair evolved

from a right, sometimes large ventriculotomy to close the

ventricular septal defect and to resect the infundibular stenosis

together with a transannular patch to relieve the right ventricular

outflow tract (RVOT) obstruction to transatrial and transpulmon-

ary approaches aiming to preserve the pulmonary valve annulus

and, whenever possible, the pulmonary valve, and to minimize

ventricular scarring.7,8

However, this contemporary approach with early complete

repair is far from being curative and late complications

after repaired TOF are frequent. In a very large cohort of patients

with repaired TOF, half of the survivors had undergone a

reoperation 30 years after repair.4 RVOT dysfunction is the most

common complication, affecting most patients in the form of

pulmonary regurgitation (PR), especially patients with transan-

nular patches.9

In some cases, the cardiac anatomy precludes complete

surgical repair, such as in patients with pulmonary atresia,

absent pulmonary valve, or in the presence of an anomalous

coronary artery that crosses the RVOT. In these cases, a conduit

from the right ventricle (RV) to the pulmonary artery is necessary

to relieve the RVOT obstruction. These conduits are also used in

other types of congenital heart surgery such us in the repair of a

common arterial trunk or some forms of complex transposition of

the great arteries (Rastelli procedure), as well as in procedures to

relieve left heart obstructions such as the Ross or Ross-Konno

procedures. Degeneration of these conduits can also lead to RVOT

dysfunction.

In this context, restoration of RVOT functionality often becomes

necessary. Percutaneous pulmonary valve implantation (PPVI),

introduced almost 2 decades ago, has become a major game-

changer in the treatment of RVOT dysfunction.

In this article, we review the pathophysiology, current

indications, and treatment options for RVOT dysfunction with a

focus on the role of PPVI in the therapeutic approach to these

patients.

PATHOPHYSIOLOGY OF RVOT DYSFUNCTION

More than half of the patients after primary TOF repair develop

RVOT dysfunction at some point in their lives. Similarly, patients

with a RV to pulmonary artery conduit sooner or later experience a

deterioration in conduit function leading to stenosis, regurgitation,

or both.

It is well known that chronic PR causes RV volume overload,

which is generally well tolerated over the years,10 but if

maintained over time may lead to RV dilation and dysfunction11

(Figure 1), which are in turn associated with atrial12 and

ventricular arrhythmias, sudden cardiac death,13–15 exercise

intolerance, heart failure, and excess mortality.16–19

In addition, residual RVOT obstruction at all levels (infundibu-

lum, pulmonary valve, main pulmonary artery or its branches) can

also contribute to RV dysfunction. Pulmonary stenosis leads to RV

pressure overload and in turn to RV dysfunction due to increased

RV mass:volume ratio, which has been shown to be predictive of

ventricular arrhythmias and death in a large retrospective study.15

Due to this common progression to RV dysfunction of both

volume- and pressure- overloaded RVs after TOF repair and its

association with clinical events, the restoration of the functionality

of the RVOT by means of pulmonary valve replacement (PVR) is

considered when these structural changes translate into clinical

problems. It is accepted that symptomatic patients with RVOT

dysfunction benefit from intervention in terms of relief of

symptoms,20–24 especially those patients with predominant

pulmonary stenosis. However, a consistent improvement in

objective functional capacity on cardiopulmonary exercise testing

has not been demonstrated.20,22,24,25 Similarly, PVR improves right

ventricular hemodynamic parameters such us RV size20; however,
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Figure 1. Progressive dilation of the right ventricle in a patient after repaired

tetralogy of Fallot and pulmonary insufficiency demonstrated by cardiac

magnetic resonance imaging. Short axis stack (basal, upper row;

midventricular, second row; apical, third row) and 4-chamber view (lower

row) of cine steady-state free precession end-diastolic (first and third

columns) and end-systolic (second and fourth columns) images of the same

patient in 2012 and 2016. Note the progression of the dilation of the right

ventricle. RVEDVi, right ventricle end-diastolic volume index; RVESVi, right

ventricle end-systolic volume index.
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neither an increase in RV function20,22,24–28 nor an improvement in

left ventricular function22,28 has been consistently demonstrated

in most studies.

Although many patients may be asymptomatic for years,

several studies have shown increased mortality in patients with

significant PR who do not undergo surgery.29 However, neither an

impact of PVR on mortality20,30 nor on late ventricular arrhythmias

and sudden death has convincingly been demonstrated to date.20

Indeed, a very recent retrospective study assessing outcomes in a

large cohort of patients with TOF either with or without PVR again

revealed no significant differences in death and sustained

ventricular tachycardia between patients with and without PVR

after a mean follow-up of 5.3 years.31 In addition, late increased

mortality has been reported in patients with repaired TOF even

after PVR,21,30,32 probably due to the fact that RV volumes and

function do not recover after PVR in a significant number patients.

Therefore, a debate has emerged regarding the optimal timing for

PVR, attempting to balance the benefits of an early restoration of

RVOT functionality in terms of reversibility of RV structural

abnormalities with the hazards of implantation of a valve with risk

of degeneration and the need for multiple subsequent surgeries for

valve replacement in the future.

CURRENT INDICATIONS AND TIMING FOR RESTORATION OF
RVOT FUNCTIONALITY

Due to the deleterious effects of RVOT dysfunction on RV

function, current therapeutic approaches aim to avoid a too late

operation by intervening when the RV structural abnormalities are

still reversible.33

Current European guidelines recommend PVR for symptomatic

patients with RVOT dysfunction after TOF repair in the form of

severe PR and/or severe pulmonary stenosis (defined as a RV

systolic pressure > 60 mmHg). Quantification of PR can be

challenging and is beyond the scope of this review.34 Similarly,

addressing clinical symptoms is sometimes not straightforward in

this group of patients and cardiopulmonary exercise testing plays a

major role in the evaluation of the symptom status and

cardiopulmonary reserve in this context.35

The indications for restoration of RVOT functionality in

asymptomatic patients with RVOT dysfunction after TOF repair

remain a major controversial issue in congenital cardiology.

Current European guidelines recommend intervention in the

presence of severe PR or pulmonary stenosis and a decrease in

objective exercise capacity in cardiopulmonary exercise testing,

progressive RV dilation, progressive decline in RV systolic function,

progressive (at least moderate) tricuspid regurgitation, very severe

RVOT obstruction with RV systolic pressure > 80 mmHg, and

sustained atrial or ventricular arrhythmias.36

Because indications for surgery in asymptomatic patients are

largely based on RV structural abnormalities, their evaluation plays

a paramount role in selecting candidates who may benefit from

surgery. Although echocardiography remains an important first-line

modality for this purpose, RV geometry and its retrosternal position

preclude an accurate assessment with this technique alone. Due to

its reproducibility and excellent spatial resolution, cardiac magnetic

resonance imaging has emerged as the cornerstone of the evaluation

of RV structural abnormalities after TOF repair.34

However, the timing of the intervention in asymptomatic

patients with known RV structural abnormalities remains chal-

lenging. The time course of RV dilation and dysfunction in patients

with RVOT dysfunction is still not well understood. In this context,

current guidelines recommend a close follow-up in specialized

centres to detect progression of structural abnormalities in

asymptomatic patients.36 It has been shown that RV volumes

and function remain stable in most patients.37,38 A recent study

showed that RV dilatation and dysfunction as well as left

ventricular dysfunction progress slowly in most patients after

TOF repair. However, in approximately 15% of the patients,

substantial worsening occurred in ventricular parameters and

was not easily predictable.38 A watchful-waiting strategy has

traditionally been adopted in most asymptomatic patients because

of the risk of multiple major cardiac surgeries, which has been

deemed to be too high in this population. In addition, a more

aggressive approach to restore RVOT functionality in asymptom-

atic patients based on cardiac magnetic resonance imaging-

derived RV volumetric data has to date not demostrated to

improve outcomes.

A number of studies have attempted to elucidate the optimal

cutoff for RV dilation indicating intervention and to determine the

best parameter to monitor RV performance over time. A study by

Geva et al.24 showed that a reduced RV ejection fraction < 45% was

associated with persistent RV dysfunction after PVR. However,

ejection fraction can be preserved in volume-overloaded ventricles

in which pathologic remodelling is already present. Cardiac

magnetic resonance imaging-derived RV end-diastolic and end-

systolic volumes have been extensively studied as indicators of

pathologic remodelling and many efforts have been made to find a

critical threshold of indexed RV end-diastolic (RVEDVi) and end-

systolic (RVESVi) volume above which complete reverse remodel-

ling is no longer achievable and therefore under which interven-

tion should be indicated. These proposed cutoff points were

progressively reduced from EVEDVi > 170 mL/m2 or RVESVi >

85 mL/m2 in the study by Therrien et al.39 to RVEDVi > 160 mL/m2

by Oosterhof et al.26 Lee et al.28 proposed cutoffs of RVEDVi

< 168 mL/m2 and RVESVi < 80 mL/m2. In the past few years,

greater focus has been placed on RV end-systolic volume,

establishing it as a more important indicator of RV hemodynamic

performance. A recent study by Bokma et al.40 showed that

undergoing PVR with a preoperative RVESVi under 80 mL/m2 was

associated with normalization of RV volumes and that a too late

intervention with RVESVi > 95 mL/m2was associated with adverse

clinical events. More recently, Ling Hen et al.41 showed that

significant reverse remodelling takes place immediately after PVR

with reductions in both RVEDVi and RVESVi, followed by a

continuing process of further biological remodelling reflected by

further reduction in RVESVi, underscoring the role of this

parameter to monitor myocardial function in this context,

proposing a RVESVi < 82 mL/m2 as the best cutoff for normaliza-

tion of RV function, in accordance with previous reports.

Some groups have proposed even lower thresholds for

intervention. A study by Frigiola et al.22 showed a higher rate of

normalization of RV volumes and an improvement in biventricular

function accompanied by an increase in exercise capacity using a

more liberal approach, with surgery being performed when

RVEDVi exceeded 150 mL/m2. However, this remains controver-

sial, as a more liberal approach in asymptomatic patients may also

have unwanted consequences. Bokma et al.31 showed that patients

undergoing PVR at a lower volumetric threshold (RVEDVi under

160 mL/m2) had a higher event rate of heart failure, atrial

arrhythmia, and nonsustained ventricular tachycardia.

Another aspect that may influence the timing of intervention in

these patients is the hypothesis supporting that the effects of

restoration of RVOT functionality may be influenced by patient age

at intervention. In the study by Frigiola et al.,22 objective

improvements in functional capacity were more likely to be

achieved in patients who underwent surgery when younger than

17 years. This more liberal approach regarding age has also been

questioned. A recent study showed that PVR before the age of

16 years did not improve event-free survival compared with PVR

after 16 years of age.42 Complications, including mortality,
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endocarditis and re-do PVR, occurred significantly earlier in

patients with PVR before 16 years of age.

CURRENT THERAPEUTIC APPROACHES TO RESTORE RVOT
FUNCTIONALITY

In most patients after primary TOF repair, surgical PVR is the

treatment of choice, as it has been shown to improve pulmonary

blood flow, reduce tricuspid regurgitation, and improve RV

mechanics, resulting in clinical improvement.18,22,24,31 Pulmonary

valve replacement can be performed with low early and late

mortality in both the pediatric and the adult population.43 Recent

series report a perioperative mortality as low as 1% in the current

era.43–45 Several surgical options to restore RVOT functionality are

available.

Mechanical valves in the pulmonary position are associated

with complications mostly related to the need for chronic

anticoagulation and the potential for valve thrombosis. They are

rarely implanted to restore RVOT functionality, despite higher

durability.46 In addition, they preclude further access to the

pulmonary circulation in case interventions in the pulmonary

vasculature become necessary.

Among the tissue valve options available for PVR, valved

homografts, valved bovine jugular vein conduits, and stented or

stentless bioprosthetic porcine and bovine pericardial valves are

the preferred options due to their lower risk of thrombosis and lack

of need for systemic anticoagulation. However, patients requiring

this type of valves, either as part of the primary repair or as a

secondary intervention to treat RVOT dysfunction are at risk of

valve failure due to degeneration.

Aortic and pulmonary homografts were historically the most

commonly used valves. A major drawback is their limited

availability and high cost, as well as their accelerated degeneration,

especially in younger patients, who may have an enhanced

immune response.47,48

A relatively common alternative to homograft conduits for

RVOT reconstruction are bovine jugular vein conduits. However,

similarly to homografts, these conduits have limited durability.

Although 1 study found bovine jugular vein conduits to have

superior durability to homograft conduits, most studies have

shown no significant differences in performance between the

conduit types.49–52

Finally, bioprosthetic valves are available in a wide range of

sizes and are the preferred option for adults undergoing surgical

PVR. It is well known that bioprosthetic valves in the pulmonary

position degenerate and lead to failure.21,27,47,53 This limited

durability is related to valve type and age at implantation, with a

median durability of approximately 15 years if implanted in the

third decade of life.53,54

The perfect surgical pulmonary valve implant does not exist and

virtually all patients receiving tissue valves or conduits for primary

repair or secondary PVR will face several reinterventions due to

degeneration.

With the advent of PPVI in 2000,55 the therapeutic approach to

restoration of RVOT functionality has undergone a significant

change. This technique has the advantage of avoiding rest-

ernotomy and cardiopulmonary bypass and has become an

attractive alternative to surgical PVR in selected patients (Figure 2).

A B

DC

Figure 2. Percutaneous pulmonary valve implantation in a dysfunctional right ventricle outflow tract (homograft). After extensive prestenting (A, B) a 22-mm

Melody valve was positioned (C) and successfully deployed, without post-procedural regurgitation (D).
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For appropriately selected candidates, mainly those with a

previously implanted RV-pulmonary artery conduit, PPVI has been

shown to be a safe and reliable option for restoration of

RVOT functionality, with a low incidence of post-procedural PR,

a reduction in patient symptoms, an improvement in right

ventricular hemodynamic parameters and an improvement in

functional capacity.56–59 Currently there are 2 devices widely used

for PPVI.

The Melody valve (Medtronic Inc, Minneapolis, MN) consists of

a platinum stent in which a bovine internal jugular vein valve

is inserted. Two diameters are currently available, 20 mm and

22 mm, which can be implanted in conduits ranging from 16 mm

to 22 mm.

The Edwards Sapien valve (Edwards Lifesciences Corp, Irvine,

CA) is a bovine pericardial valve within a balloon-expandable stent.

The system was originally developed for transcatheter aortic valve

implantation and was first used in the pulmonary position in

2006.60 Current developments of the system, with second- and

third-generation prostheses (Sapien XT and Sapien 3, respectively)

are already available. Both use cobalt chromium stents and are

being used for PPVI with a range of valve sizes from 20 mm to

29 mm.61

In recent years, the experience has become broader and the

results are promising. PPVI with the Melody valve provided good

hemodynamic and clinical outcomes up to 7 years after

implantation, with 5-year freedom from reintervention and

explantation of 76% and 92%, respectively.62 Although usually

implanted through the femoral vein, alternative access routes

such as jugular or transhepatic can be successfully used in

patients with venous obstructions.63 However, this technique is

not free of complications and a number of technical factors play a

major role in clinical outcomes. In earlier experiences, stent

fracture due to the anterior position of the valve in the thorax

with increased mechanical stress was a common cause of valve

failure. The current almost universal use of prestenting has

dramatically decreased this complication.62 Small patients with

small conduits are a challenging group, and despite the good

results of PPVI in the pediatric population,64 conduit rupture or

perforation can occur. This complication can be overcome with

the bail-out use of covered stents. Coronary obstruction due

to compression at the time of implantation can occur in up to

5% of patients.65 A careful evaluation of the coronary anatomy

with simultaneous balloon inflation is necessary to avoid this

complication. Endocarditis can be a major complication with

rates reported up to 2.4%.66 Patients treated with percutaneous

pulmonary valves are exposed to other, less frequent complica-

tions currently better known and studied in patients treated with

transcatheter valves in aortic position. Noninfective valve

thrombosis has been reported after PPVI and, although commonly

resolved with anticoagulation, it can represent significant

morbidity in this population.67–69

The need for a stable landing zone to anchor the valve has

limited PPVI to approximately 15% of patients with RVOT

dysfunction.70 However, this approach has become an attractive

option for secondary RVOT interventions in patients with a

bioprosthetic valve, as valve-in-valve implantations can avoid

reoperations in these patients71,72 (Figure 3). New developments

may allow an expansion of the indications to patients with native

RVOTs with larger diameters and without previously implanted

conduits or valves.73–75 In addition, the use of modern percutane-

ous valves with diameters up to 29 mm allow the treatment of

larger dysfunctional RVOTs.61 Moreover, the more widespread use

of modern surgical approaches respecting the pulmonary valve at

the expense some of residual stenosis can increase the number of

potential candidates for this technique.

Nevertheless, there is still a large number of patients with

dilated RVOTs due to extensive transannular patches in which the

placement of a percutaneous device remains a challenge and they

are usually referred to surgical PVR. Strong research efforts are

focusing on new devices to expand percutaneous techniques to

these patients. Promising results have been shown by the Venus P

valve (Med Tech, Shanghai, China), consisting of a self-expanding

nitinol stent with a porcine pericardial valve with proximal and

distal expansions, and the Harmony transcatheter pulmonary

valve (Medtronic Inc), which is a 22 mm porcine pericardial valve

sewn to an asymmetric self-expanding stent of nitinol, also with

A B C

D E F

Figure 3. Percutaneous pulmonary valve implantation in a dysfunctional bioprosthesis (valve-in-valve). A-C: implantation of a Sapien XT valve in a Perimount

bioprothesis without prestenting. D-F: implantation of a Sapien 3 valve in a Carpentier-Edwards bioprosthesis with prestenting to prepare the landing zone.
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larger proximal and distal ends to accommodate different RVOT

morphologies.76–78

RETHINKING THE TIMING OF RVOT REINTERVENTION IN THE
ERA OF PPVI

Current European guidelines recommend PPVI with the same

indications as PVR in suitable candidates.36 In practice, PPVI is

usually offered as the first-line option to patients with RVOT

dysfunction who are technically suitable candidates, as these

patients are generally poor surgical candidates. However, no

randomized clinical trial has compared surgical PVR to transcath-

eter PPVI head-to-head and it still remains unclear whether PPVI

should be offered over surgical PVR in patients who are eligible for

surgery and are at low operative risk. In addition, only patients

with conduits or previous PVR are usually technically suitable for

PPVI, while most of those with native RVOT are currently not.

Figure 4. Proposed algorithm for the management of RVOT dysfunction after TOF repair. CMR, cardiac magnetic resonance imaging; CPET, cardiopulmonary

exercise test; GUCH, grown-up congenital heart disease; PPVI, percutaneous pulmonary valve implantation; PR, pulmonary regurgitation; PS, pulmonary stenosis;

PVR, pulmonary valve replacement; RV, right ventricle; RVEDVi, right ventricle end-diastolic volume index; RVEF, right ventricular ejection fraction; RVESVi, right

ventricle end-systolic volume index; RVOT, right ventricle outflow tract; RVSP, right ventricle systolic pressure; TOF, tetrallogy of Fallot; TR, tricuspid regurgitation.
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Despite current applicability to only a subgroup of patients with

RVOT dysfunction, the advent of PPVI has led to a paradigm change

in the general approach to restoration of RVOT functionality after

TOF repair beyond the ‘‘competition’’ of both techniques.

As previously mentioned, one of the major pitfalls of TOF repair

is the need for restoration of RVOT functionality at some point after

repair. Most patients will receive a valve or conduit which will

inevitably degenerate over the years, leading to several reopera-

tions over a lifetime, with associated morbidity and mortality.14,66

This fact has contributed to a certain resistance among

congenital cardiologists to refer patients with RVOT dysfunction

for surgical PVR as long as they are asymptomatic. The possibility

of performing PPVI as a valve-in-valve procedure in a degenerated

bioprosthesis can avoid reoperations and has become largely

accepted in this clinical scenario,71,72 as PPVI can be performed

with a very low risk in the current era. The most contemporary

series, accounting for the current almost universal practice of

extensive prestenting, shows excellent short- and mid-term

outcomes.79 In this regard, a recent meta-analysis of 19 studies

including 1044 patients undergoing transcatheter pulmonary

valve implantation reported a procedural success rate over 96%

with a conduit rupture rate of 4.1% and coronary complication rate

of 1.3%. The incidence of reintervention was 4.4 per 100 person-

years overall and was significantly lower in studies reporting

higher rates of prestenting.80 In addition, patients with a stenotic

transcatheter pulmonary valve (for example due to stent fracture)

could also benefit from a percutaneous reintervention.62

However, the number of percutaneous re-do procedures is

limited as the effective maximum internal diameter of the conduit

or bioprosthesis is inevitably decreased after each valve place-

ment. Additionally, although long-term data are lacking, percuta-

neous pulmonary valves are expected to degenerate after several

years similarly to their surgical counterparts. In addition, it

remains to be demonstrated whether percutaneous valves impact

survival by avoiding new operations. Moreover, it seems unlikely

that percutaneous valves avoid surgery at all in these patients.

Increased age, and eventually increased comorbidities may confer

a higher risk for the probably unavoidable intervention. In

addition, the presence of numerous stents and valves in the RVOT

may increase surgical complexity and therefore surgical risk.

Nevertheless, the availability of a percutaneous alternative to

surgery with a low risk profile for degenerated valves seems to

support earlier intervention in patients with RVOT dysfunction

after TOF repair, even if surgery is the first-line option before RV

structural abnormalities become irreversible. If symptoms or RV

structural abnormalities fulfilling the criteria for PVR occur during

late childhood or adolescence often an adult-sized bioprosthesis

can be inserted. At this point surgeons should take into account

the possibility of implanting a subsequent percutaneous valve in

case there is degeneration of the surgical valve when choosing the

valve type (stented porcine or bovine pericardial bioprosthetic

valve instead of cryopreserved homografts) and the valve size (at

least 25 mm), to allow the implantation of subsequent percutane-

ous valves. If this is not possible because the patient’s chest cannot

accommodate such a valve, a bovine jugular vein conduit can be

used, as recent data show that PPVI is feasible even in the lowest

spectrum of sizes.81

Figure 4 summarizes in an algorithm our approach to the

management of RVOT dysfunction in patients after TOF repair.

CONCLUSION

The timing of restoration of RVOT functionality in patients with

RVOT dysfunction after TOF repair remains controversial. Howev-

er, the advent of PPVI has provoked a paradigm shift toward an

earlier RVOT repair for PR, even if surgery is required in a first step.

Once an appropriately sized bioprosthetic ring has been implanted,

PPVI is feasible, with low risk and good short- to mid-term

outcomes. Whether an earlier PVR and subsequent PPVI to avoid

reoperations indeed impacts outcomes has, however, yet to be

demonstrated.
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