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INTRODUCTION

Competing risks (CR) has been recognized as a special case of

time-to-event analysis since the 18th century. Occasionally work

in the statistical or mathematical area has been published

incorporating new developments, including the monograph of

David and Moeschberger.1 As the data became more extensive,

clear, and precise regarding the different types of outcomes, CR

resurfaced as a crucial type of analysis within time-to-event

analysis, necessary for a better understanding of a disease. The

connection between themathematical results and the applied field

needed to be made. Several authors have contributed to the

understanding of CR situations.2,3 Other authors enhanced and

developed techniques and in some cases made available ready-to-

use computer code for applied statistics.4–6

INTRODUCTION TO TIME-TO-EVENT ANALYSIS

In many studies the outcome is observed longitudinally. In this

way every subject in the cohort is observed for a period of time until

the event occurs. For example the event of interest may be death,

heart attack, or cancer recurrence. The goals of the study may be to
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A B S T R A C T

The need to develop treatments and/or programs specific to a disease requires the analysis of outcomes

to be specific to that disease. Such endpoints as heart failure, death due to a specific disease, or control of

local disease in cancer may become impossible to observe due to a prior occurrence of a different type

of event (such as death from another cause). The event which hinders or changes the possibility of

observing the event of interest is called a competing risk.

The usual techniques for time-to-event analysis applied in the presence of competing risks give

biased or uninterpretable results. The estimation of the probability of the event therefore needs to be

calculated using specific techniques such as the cumulative incidence function introduced by Kalbfleisch

and Prentice. The model introduced by Fine and Gray can be applied to test a covariate when competing

risks are present. Using specific techniques for the analysis of competing riskswill ensure that the results

are unbiased and can be correctly interpreted.
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R E S U M E N

La necesidad de desarrollar tratamientos o programas especı́ficos para una enfermedad requiere un

análisis de los resultados que sea especı́fico para dicha enfermedad. Criterios de valoración como la

insuficiencia cardiaca, la muerte debida a una enfermedad especı́fica o el control de la enfermedad local

en el cáncer pueden ser imposibles de observar debido a la aparición previa de un tipo de evento

diferente (como lamuerte por otra causa). El evento que dificulta omodifica la posibilidad de observar el

evento de interés se denomina riesgo competitivo.

Las técnicas habituales de análisis del tiempo hasta el evento aplicadas en presencia de riesgos

competitivos producen unos resultados sesgados o no interpretables. La estimación de la probabilidad

del evento debe calcularse, pues, con el empleo de técnicas especı́ficas como la función acumulativa de

incidencia introducida por Kalbfleisch y Prentice. El modelo introducido por Fine y Gray puede aplicarse

para evaluar una covariable cuando hay riesgos competitivos. Con el empleo de técnicas especı́ficas para

el análisis de los riesgos competitivos se asegurará que los resultados no estén sesgados y puedan

interpretarse correctamente.

� 2011 Sociedad Española de Cardiologı́a. Publicado por Elsevier España, S.L. Todos los derechos reservados.
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estimate the probability of the event occurrence or its association

with covariates of interest like treatment or subject characteristics.

The statistical analysis employed is called time-to-event analysis or

sometimes survival analysis. Themost commonmethod to estimate

the probability of an event is a nonparametric approach customarily

called the Kaplan-Meier7 (KM) or product limit method. The main

assumption of the KM estimation for survival is that the censored

observations will experience the event if followed long enough.

For the rest of this paper, the probabilities for the event will be

given rather than the probability for free-of-event. For example,

instead of probability of survival, probability of death will be

presented, which can be estimated using the complement of the

KM estimator: 1-KM.

INTRODUCTION TO COMPETING RISKS

It is not uncommon for a participant in a study to experience

more than one type of event. A CR situation happens when the

occurrence of one type of event changes the ability to observe the

event of interest. Miyasaka et al.8 conducted a study on a

community-based cohort of patients diagnosed with atrial

fibrillation between 1986 and 2000 in Olmsted County, Minnesota,

United States. The primary outcome was the onset of dementia.

The median follow-up was 4.6 years. Other types of events were

stroke and death. Of the 2837 individuals with atrial fibrillation,

299 had dementia and 1638 died by the time of the analysis. The

numbers with stroke are not reported and are censored in the

analysis. The conclusion of the study was that the incidence of

dementia among the individuals with atrial fibrillation is common

(10.5% at 5 years using KM method). The occurrence of stroke

before dementia does not affect the observation of dementia and

thus it is not a CR event. For the sake of argumentwe ignore the fact

that multiple strokes can cause dementia. On the other hand, a

death without prior dementia makes the observation of dementia

impossible. Therefore, a death without dementia is a CR event for

the endpoint of dementia. Also a severe head injury might be

considered a CR event since the behavioral changes of the patient

might make the diagnosis of dementia impossible.

A more subtle CR situation occurs in the study conducted by

Whalley et al.9 of the importance of echocardiography. This cohort

of 228 elderly symptomatic patients underwent echocardiography

and was followed for either cardiovascular hospitalization or

cardiovascular death. The hypothesis was that the echocardio-

graphy features predict for cardiovascular event. The main

outcome was defined as the composite measure including

cardiovascular death and/or hospitalization. For this type of

outcome a death due to causes other than cardiovascular disease

is a CR event and, as such, a patient is no longer at risk of having any

of the events of interest.

A 3-arm, double-blind, randomized trial was conducted

spanning 931 centers and 24 countries to test the effect of

valsartan vs valsartan + captopril vs captopril alone (VALIANT)10

on all-cause mortality. In total, 14 703 post-myocardial infarction

patients with left ventricle dysfunction and/or heart failure

accrued 1:1:1 in the 3 arms. Since any death was considered an

event, this type of outcome does not have CR. The study supported

the hypothesis that survival in the 3 arms was different. However,

gastrointestinal (GI) bleeding was identified as a serious side effect

in all 3 arms. Moukarbel et al.11 studied the possible factors which

could predict GI bleeding. For this endpoint, death without GI

bleeding is a clear CR.

An increasing number of researchers recognize the presence of

CR and the need for proper techniques to be applied. A cohort of

972 patients with non-ST-segment elevation acute coronary

syndrome between 2001 and 2005 was studied by Núñez

et al.12 One of the goals of the study was to find factors associated

with rehospitalization for acute heart failure. Among the factors

studied were diabetes, previous history of ischemic heart disease,

chronic kidney failure, smoking history, and treatment history. The

authors recognized the possibility of CR such as death before

rehospitalization and correctly applied specific techniques to

account for the CR situation.

Melberg et al.13 studied a cohort of 1234 patients with

symptomatic coronary artery disease who received 2 types of

treatments: coronary artery bypass grafting (n = 594) or percuta-

neous coronary intervention (n = 640). Of the 301 deaths observed

during the follow-up, 42.5% were cardiac deaths and the rest were

noncardiac deaths. The authors present results for all-cause

mortality as well as for cardiacmortality and noncardiacmortality.

They point out that the percentage for all-cause mortality is the

sum of the percentage of cardiac and noncardiac mortality

correctly estimated taking into account the CR. The authors

emphasize the importance of analyzing each of the events of

interest rather than combining them into an overall mortality.

This topic is also expounded at a more general level by Mell and

Jeong.14

As could be surmised from the above examples, the main

question when CR are present is whether to ignore the CR and

censor the observations involving CR or to account for CR. When

the CR are ignored and the CR observations are censored the

analysis reduces to a ‘‘usual’’ time-to-event scenario. Due to the

familiarity of this type of analysis and the availability of software,

many researchers resort to this approach, as seen in the earlier

examples. However, it is unanimously agreed not only among

statisticians2,15–18 that the estimation of the probability of event in

this case overestimates the true probability. The next natural

question is whether the modeling can be performed within these

bounds (ignoring/censoring CR). This is more ambiguous andmore

difficult to grasp. While such an analysis may not be without value

its interpretation is almost always fraught with difficulties. The

main requirement is that the CR event (whose observations were

censored andmixed with the true censored observations) needs to

be independent of the event of interest. If this is the case, then the

results could be interpreted as the effect of covariates when the CR

events did not exist. However, this assumption cannot usually be

made and cannot be verified or tested. In conclusion, every time

the CR observations are censored the estimation of the probability

of event is incorrect and the interpretation of the effect of

covariates is not clear due to the lack of knowledge of the

independence between the event of interest and CR event.

When the analysis is performed accounting for CR (and coded

distinctly from the event of interest or the censoring) then the

probability is correctly estimated and the modeling has a

straightforward interpretation. There is no assumption of inde-

pendence to hinder the interpretation. The coefficient of a

covariate thus estimated represents the effect of that covariate

on the observed probabilities.

Several authors19,20 attempted to compare the two approaches

in terms of the power of the tests using simulations. However, the

researcher needs to be aware that the main problem is in the

interpretation of the results. Regardless of how powerful the tests

are, the analysis needs to answer the question of the study.

ESTIMATING THE PROBABILITY OF EVENT

It is common practice to apply the KM method to estimate the

probability of an event. The typical formula for the KM estimate is

Ŝ tð Þ ¼
Q

ti�t
ni�di
ni

, where t1 < t2 < t3 < ... are the ordered time points

at which an event was observed, ni represents the number of

patients at risk at time ti and di is the number of events at time ti.
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This formula can be transformed through algebraic manipula-

tion to express the probability of event as:

P̂ tð Þ ¼ 1� Ŝ tð Þ ¼
X

ti�t

di
ni
Ŝ ti�1ð Þ: (1)

In the presence of CR there are at least 2 types of events: event

of interest, identified with the subscript e, and the competing risk

event, identified with the subscript c. Kalbfleisch and Prentice

introduced the formula for the probability of an event of interest in

the presence of CR:

P̂e tð Þ ¼
X

ti�t

dei
ni

Ŝ ti�1ð Þ (2)

It is interesting to note the relationship between (1) and (2).

Since di is the number of all events at ti, it can be conceived as the

sum of the number of events of interest dei and the number of CR

events dci at time ti. As such, the probability of any type of event can

be decomposed as:

Probability of all events

¼
X

ti�t

di
ni
Ŝ ti�1ð Þ ¼

X

ti�t

dei þ dci
ni

Ŝ ti�1ð Þ

¼
X

ti�t

dei
ni

Ŝ ti�1ð Þ þ
X

ti�t

dci
ni

Ŝ ti�1ð Þ ¼ P̂e tð Þ þ P̂c tð Þ

(3)

Thus the probability of all events can be decomposed in the

probabilities for each type of event.

If 1-KM is used to calculate the probability of an event of

interest in the presence of CR, survival of all events in formula (2) is

replaced by the KM estimate based on the events of interest only.

This will bias the results, as will be shown later. The main

assumption for the use of the KM method is that the censored

patients, if followed long enough, will eventually experience the

event. However, when the KM method is used in the presence of

CR, the patients experiencing types of events other than the event

of interest are usually censored, even though they are no longer at

risk for the event of interest. Furthermore, the nice decomposition

seen in (3) cannot be performed for the 1-KM formula.

In applied situations it is possible that there are several other

types of events which are not of interest. In this case all can be

grouped under the umbrella of CR events.

It will be shown through an example that the use of the KM

method is not appropriate in the presence of CR.

Description of the Example

A dataset collected to study the late effects of the treatment for

Hodgkin lymphomawill be used for illustration. Themain outcome

is hospitalization for cardiac disease. The Hodgkin lymphoma is a

type of cancer which appears mostly in young adults. In its early

stages it is almost curable, with 10-year overall survival of 70%.

Thus, a cohort of these patients is ideal to study the long-term side

effects of treatment. The dataset used here is a subset of a larger

cohort which will be reported elsewhere. The data are also

modified to serve our purposes. For example, for simplicity, we

kept in the data only patients who had either chemotherapy or

radiation, excluding those with combined treatment. To increase

the rate of CR (death without cardiac hospitalization), we included

patients of all stages. Some follow-up and death dates were

imputed. Due to the modifications that were made to the data, no

clinical conclusions can be drawn from this analysis. The data

presented here reference 689 records with 93 cardiac hospitaliza-

tions and 467 deaths.

The rates for cardiac hospitalization and for death without a

cardiac event will be calculated using both the KMmethod (1) and

the cumulative incidence function (CIF) introduced by Kalbfleisch

and Prentice21 for this purpose (2).

The Kaplan-Meier Method Applied to a Competing Risks
Situation Overestimates the True Rate of the Event

Figure 1 presents the CIF and 1-KM estimates for cardiac

hospitalization of the group treated with chemotherapy only. The

broken line corresponding to the 1-KM estimates is above the solid

line representing the CIF estimates. It can be shown mathema-

tically that 1-KM always overestimates the probability of event. A

common misconception is that 1-KM estimates are correct if the

two events are independent. The independence between events is

always questionable at best, but even when the data is simulated

as independent events, the difference between the CIF estimates

and the 1-KM exists. The size of the difference depends on the

number of events, both for events of interest and the CR events. In

Miyasaka et al.,8 the incidence of dementia at 5 years using the KM

method was 10.5%. The number of CR (deaths) was about three

quarters of the total number of events, which suggests that their

estimate may be much larger than what is observed.

The Cumulative Incidence Function Partitions the Probability
of Any Event (Cardiac Hospitalization or Death) Into the
Constituent Probabilities

Algebraically this is proven in (3). However, for a deeper

understanding of how it works, it will be shown graphically that

from the probability of all events a portion participates to the CIF

for one event and the other to the CIF for the other event. Figure 2A

shows the probability of any event: cardiac hospitalization or

death without cardiac hospitalization. Figure 2B contains only the

curve between 10.7 and 10.85 years, such that the steps are visible.

On each step there is a circle. The open circles appear on the steps

in which a death was observed while the solid circles are on the

steps in which a cardiac hospitalization occurred. The steps with

solid circles participate in the CIF for the cardiac hospitalization in

panel C and the ones with open circles participate in the curve for

death in Figure 2D. Thus, each step will contribute to the

probability of the event which causes it. In this way, at any point

in time the probability of all events is the sum of the probability of

the event of interest and the probability of CR. Note that the last 3

panels (Figs. 2B-D) show the same window of time and have the

same length for the y-axis such that the size of the steps can be[(Figure_1)TD$FIG]
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Figure 1. Cumulative incidence function vs 1- Kaplan-Meier estimates.. CIF,

cumulative incidence function; KM, Kaplan-Meier.
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compared between them. Table 1 shows these probabilities at 1, 2,

3, 4 and 5 years.

Because the 1-KM overestimates the probability for an event, if

we tried to add the 1-KM estimates for cardiac hospitalization to

the 1-KM for death we would obtain a much higher rate than the

probability of any event. In some cases the number obtained is

even larger than 1, which proves that in the presence of CR, 1-KM

estimates are not even probabilities.

Does the Cumulative Incidence Function Method Indeed
Estimate the Correct Probability of Event?

For this purpose a dataset of 500 records was simulated such

that there is no censoring before 5 years and there are 2 types of

events: type 1and 2. Table 2 shows for each type of event the

number observed up to that point in time, the crude rate, and the

CIF estimate,which are exactly equal. Equalityhappens onlywhen

there are no censored observations up to that point in time. In the

presence of censored observations within the reported years the

equality does not hold and the correct way to estimate the

probability is the CIF and not the crude rate.

In conclusion, to calculate the probability of event in the

presence of CR one has to use the method introduced by

Kalbfleisch and Prentice, customarily called the cumulative

incidence curve.

MODELING

An important aspect in an analysis is to test the association

between a covariate and the event of interest, either alone or

adjusting for other factors. In the absence of CR this is routinely
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Figure 2. The partition of the probability of all events into the constituent probabilities. A. The probability of cardiac hospitalization or death. B. The probability of

cardiac hospitalization or death only for the window of time 10.70 - 10.85 years. The solid circles indicate the cardiac hospitalization and the open circles represent

deaths without cardiac hospitalization. C. The probability of cardiac hospitalization in the window of time 10.70 -10.85 years. D. The probability of death without

cardiac hospitalization in the window of time 10.70-10.85.

Table 1

The Probability for Any Event Is the Sum of the Constituent Probabilities

Year of

reporting

Probability

of cardiac

hospitalization

Probability

of death

Probability of

either cardiac

hospitalization

or death

1 0.038 0.054 0.092

2 0.054 0.139 0.193

3 0.072 0.193 0.265

4 0.076 0.25 0.327

5 0.087 0.305 0.392
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accomplished by using the Cox proportional hazards (Cox PH)

model.22

In the presence of CR, the Cox PH model does not have a

simple interpretation. If the time to the 2 types of events can be

considered independent, then the results can be interpreted as

showing the effect in the situation when CR do not exist.

However, the assumption of independence can rarely be made or

tested and thus the results from Cox PH model are usually not

interpretable.

Fine and Gray Model

Fine and Gray6 (F&G) modified the Cox PH model to allow for

the presence of CR. The technical modification consists of keeping

the CR observations in the risk set with a diminishing weight. In

this way the F&G method models the subdistribution hazards. The

effect estimated using the F&G model shows the current and real

differences between the treatment groups in terms of subdistribu-

tion hazards ratios. The assumption of proportionality of hazards is

still a requirement, but of course it refers to the subdistribution

hazards. The F&G model can accommodate time dependent

coefficients to model the nonproportionality of hazards. This

model can be applied to both the event of interest (cardiac

hospitalization) or the CR (death).

The Cox PH and F&G models were applied to the Hodgkin

lymphomadataset to test the treatment option of chemotherapy vs

radiation. For this example (Table 3) the results from the Cox PH

and the F&G models differ substantially (first 2 rows). As

mentioned above, the Cox PH results are not interpretable and

cannot be used. The second row shows that there are more cardiac

hospitalizations among the radiation group and the third row

shows more deaths among the chemotherapy group. Figure 3

shows these results graphically. It is possible that chemotherapy

alonewas given to patients withmore advanced disease, and these

patients were also more likely to die of their cancer. On the other

hand radiation alone was probably given to patients at an early

stage who lived longer after the Hodgkin lymphoma diagnosis.

These patients hadmore of a chance to develop late side effects like

cardiac disease.

As can be seen from this example, the interpretation of results is

a work of collaboration between the statistician and the clinician

who has a thorough knowledge of the disease.

The presence of CR complicates both the analysis and the

interpretation of data. To allow the reader to correctly interpret the

results, the authors need to include details on the observed events

even though they may not seem important at first sight. Therefore,

when the endpoint is observed over time the authors need to

include the event of interest, whether there is the possibility of CR,

howmany patients experience any of these types of events, and the

duration of follow-up. In the presence of CR it is informative to

include the analysis for the event of interest as well as the analysis

for CR, as they complement each other and could help interpret the

results.

The Logistic Approach

Let us suppose first that we are in the framework of no CR.

When the outcome is expected to occur within a short interval (eg,

1 year), the tool of choice for many researchers is logistic

regression. This is appropriate if every individual in the cohort

has theminimum follow-up, in this case 1 year. In fact the estimate

for 1-year mortality will coincide with the estimate of 1-KM. The

temporal cut-off point needs to be the same for every individual in

the cohort. Therefore, if the outcome of interest is 1-year mortality

and 1 individual in the cohort dies at 1 year and 2 days, that person

should be considered as ‘‘no event at 1 year.’’ This may reduce the

number of events, which translates into a less than ideal analysis

when many observed events occur after the cut-off point.

The same basic rules apply when CR are present. All individuals

in the cohort must have the minimum follow-up chosen as the

time cut-off point, and that cut-off point must apply for everyone

in the cohort. The coefficients and p-values will in general give the

same message but will not be exactly the same for the logistic

regression as compared to F&G model. First of all, in logistic

regression the coefficient represents the log of the odds ratio, while

in F&G model it is the log of the ratio of the hazards

subdistributions. In addition, in logistic analysis not all events

are used and of course a different model is used.

POWER CALCULATION

When themeasure is time-to-event, the power calculation has

two stages. The first step is to calculate the number of events

Table 2

The Probability of the Two Types of Event When There Are No Censored Observations Up to 5 Years

Year of reporting Number of type

1 event

Crude rate of type

1 event (%)

CIF for type

1 event (%)

Number of type

2 event

Crude rate of type

2 event (%)

CIF for type

2 event (%)

1 year 31 6.2 6.2 39 7.8 7.8

2 years 49 9.8 9.8 74 14.8 14.8

3 years 62 12.4 12.4 105 21 21

4 years 76 15.2 15.2 140 28 28

5 years 87 17.4 17.4 170 34 34

CIF, cumulative incidence function.

Table 3

The Effect of the Treatment When Cox Proportional Hazards and Fine and Gray Models Are Employed

Endpoint Model HR 95% CI for HR P-value

Cardiac hospitalization Cox PH 1.07 0.71-1.63 .74

Cardiac hospitalization F&G 1.63 1.1-2.445 .02

Death without cardiac hospitalization F&G 0.38 0.31-0.47 <.0001

CI, confidence interval; Cox PH, Cox proportional hazards model; F&G, Fine and Gray model; HR, hazard ratio.

The hazard ratios show the increase of the hazards for the radiation group as compared to chemotherapy group.
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needed in order to detect a specific effect size. Next, the number of

patients needed to observe that number of events is calculated. It

was emphasized in the previous sections thatwhenCR are present

it is not possible to observe all the events of interest due to the

occurrence of CR. Since the number of events is central in the

calculation of power, extra care needs to be taken to ensure that CR

are taken into account. If the CR are not considered, then the study

will be underpowered and therefore likely unsuccessful (and

possibly unethical).

SOFTWARE

The open source R software on CRAN (the Comprehensive R

Archive Network) site (http://cran.r-project.org/) offers a package

(cmprsk) implemented by Dr. Robert Gray containing the

necessary tools for a complete analysis accounting for CR. Thus,

one could obtain observed probability plots for the event of

interest and a p-value based on Gray’s test, which is a modified

logrank test for CR situation. Within the package there is also a

function for modeling using the F&G approach. Luca Scruca

enhanced the output delivery of the modeling function for an

easier read by incorporating in the package a summary type

function. The model has the possibility to check the proportion-

ality of hazards, and terms for time dependent coefficients can be

included. The code cannot accommodate left truncation or cluster

data. The left truncation would be useful for the analysis of

multiple/recurrent events per patient or for the analysis of case

cohort. A code for case-cohort studies was developed (Pintilie

et al.23) and can be obtained from the authors. Zhou et al.24

extended the F&G model to accommodate stratified data and will

also have a version for cluster data. At this point the code may be

obtained from the authors for both cases but it is likely that it will

be submitted to CRAN.

STATA 11 has recently implemented the F&Gmodel. One needs

to be aware that the graphs obtained using STATA are predictive

rather than observed probability graphs. There are two caveats

when predicted curves are used: a) the lines will always appear as

if the proportionality of hazards is satisfied, and b) the number of

steps in each curvewill be larger than the number of events in each

subgroup, giving the impression that there are more events than

there really are.

CONCLUSIONS

The availability of large datasets with complete follow-up for

several endpoints is continuously increasing. There is also an

increasing need for analyses which are concerned with a precise

endpoint like death from heart failure or disease control or control

of local disease. All these endpoints could potentially have CR.

Therefore it is essential that the CR be considered from the design

stage to the interpretation of results. While the Cox PHmodel may

have a limited value when independence is considered, the KM

estimates are not correct and cannot be interpreted. Thus, specific

techniques like CIF and F&G models made available in R and

partially in STATA need to be applied.
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cardiaca aguda post-alta hospitalaria tras un sı́ndrome coronario agudo sin
elevación del segmento-ST y riesgo de muerte e infarto agudo de miocardio
subsiguiente. Rev Esp Cardiol. 2010;63:1035–44.

13. Melberg T, Nygard OK, Kuiper KK, Nordrehaug JE. Competing risk analysis
of events 10 years after revascularization. Scan Cardiovasc J. 2010;44:
279–88.

14. Mell LK, Jeong JH. Pitfalls of using composite primary end points in the presence
of competing risks. J Clin Oncol. 2010;28:4297–9.

15. Southern DA, Faris PD, Brant R, Galbraith PD, Norris CM, Knudtson ML, et al.
Kaplan-Meiermethods yieldedmisleading results in competing risk scenarios. J
Clin Epidemiol. 2006;59:1110–4.

16. Gelman R, Gelber R, Henderson IC, Coleman CN, Harris JR. Improved meth-
odology for analyzing local and distant recurrence. J Clin Oncol. 1990;8:
548–55.

17. Satagopan JM, Ben-Porat L, BerwickM, RobsonM, Kutler D, Auerbach AD. A note
on competing risks in survival data analysis. Br J Cancer. 2004;91:1229–35.

18. Putter H, SasakoM, Hartgrink HH, Van de Velde CJH, VanHouwelingen JC. Long-
term survival with non-proportional hazards: results from the Dutch Gastric
Cancer Trial. Stat Med. 2005;24:2807–21.

19. Varadhan R, Weiss CO, Segal JB, Wu AW, Scharfstein D, Boyd C. Evaluating
health outcomes in the presence of competing risks a review of statistical
methods and clinical applications. Med Care. 2010;48:S96–105.

20. Freidlin B, Korn EL. Testing treatment effects in the presence of competing risks.
Stat Med. 2005;24:1703–12.

21. Kalbfleisch JD, Prentice RL. The statistical analysis of failure time data. 1st ed. New
York: Wiley; 1980.

22. Cox DR. Regression models and life-tables. J R Statist Soc B. 1972;34:187–220.
23. Pintilie M, Bai Y, Yun LS, Hodgson DC. The analysis of case cohort design in the

presence of competing risks with application to estimate the risk of delayed
cardiac toxicity among Hodgkin lymphoma survivors. Stat Med. 2010;29:
2802–10.

24. ZhouB, LatoucheA,RochaV, Fine JP. Competingrisks regression for stratifieddata.
Biometrics. 2010. doi:10.1111/j.1541-0420.2010.01493.x. [Epub ahead of print].

M. Pintilie / Rev Esp Cardiol. 2011;64(7):599–605 605

http://dx.doi.org/10.1111/j.1541-0420.2010.01493.x

	An Introduction to Competing Risks Analysis
	INTRODUCTION
	INTRODUCTION TO TIME-TO-EVENT ANALYSIS
	INTRODUCTION TO COMPETING RISKS
	ESTIMATING THE PROBABILITY OF EVENT
	Description of the Example
	The Kaplan-Meier Method Applied to a Competing Risks Situation Overestimates the True Rate of the Event
	The Cumulative Incidence Function Partitions the Probability of Any Event (Cardiac Hospitalization or Death) Into the Constituent Probabilities
	Does the Cumulative Incidence Function Method Indeed Estimate the Correct Probability of Event?

	MODELING
	Fine and Gray Model
	The Logistic Approach

	POWER CALCULATION
	SOFTWARE
	CONCLUSIONS
	CONFLICTS OF INTEREST
	REFERENCES


