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Introduction and objectives. Mathematical models of
cardiac electrical activity may help to elucidate the
electrophysiological mechanisms involved in the genesis
of arrhythmias. The most realistic simulations are based
on reaction-diffusion models and involve a considerable
computational burden. The aim of this study was to
develop a computer model of cardiac electrical activity
able to simulate complex electrophysiological phenomena
but free of the large computational demands required by
other commonly used models. 

Material and method. A cellular automata system was
used to model the cardiac tissue. Each individual unit had
several discrete states that changed according to simple
rules as a function of the previous state and the state of
the neighboring cells. Activation was considered as a pro-
babilistic process and was adjusted using restitution cur-
ves. In contrast, repolarization was modeled as a determi-
nistic phenomenon. Cell currents in the model were
calculated with a prototypical action potential that allowed
virtual monopolar and bipolar electrograms to be simula-
ted at any point in space. 

Results. Reproducible flat activation fronts, propaga-
tion from a focal stimulus, and reentry processes that
were stable and unstable in two dimensions (with their co-
rresponding electrograms) were obtained. The model was
particularly suitable for the simulation of the effects obser-
ved in curvilinear activation fronts. Fibrillatory conduction
and stable rotors in two- and three-dimensional substra-
tes were also obtained. 

Conclusions. The probabilistic cellular automata model
was simple to implement and was not associated with a
high computational burden. It provided a realistic simula-
tion of complex phenomena of interest in electrophysio-
logy.
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Desarrollo de un modelo probabilístico 
de la actividad eléctrica cardíaca basado 
en un autómata celular

Introducción y objetivos. La utilización de modelos
matemáticos de activación y propagación del impulso ha
mejorado la comprensión de diversos mecanismos elec-
trofisiológicos involucrados en la génesis de las arritmias.
Las simulaciones más realistas se basan en los modelos
de reacción-difusión e implican una carga computacional
muy elevada. El objetivo del estudio es desarrollar un
modelo de activación eléctrica cardíaca por ordenador
que permita simular fenómenos electrofisiológicos com-
plejos y que no requiera la carga computacional necesa-
ria en otros modelos habitualmente empleados. 

Material y método. Se ha modelado el tejido cardíaco
como un autómata celular, cada uno de cuyos elementos
adopta estados discretos en función de su estado previo
y del de las células vecinas siguiendo unas reglas senci-
llas. La activación se contempla como un proceso proba-
bilístico y se ajusta mediante el fenómeno de restitución,
mientras la repolarización se modela como un proceso
determinista. Finalmente, las corrientes celulares se cal-
culan utilizando un potencial de acción prototipo, lo que
permite simular los electrogramas virtuales monopolares
y bipolares en cualquier punto del espacio.

Resultados. Se ha conseguido reproducir frentes pla-
nos de activación, propagación de un estímulo focal y re-
entradas estables e inestables en 2 dimensiones, con sus
electrogramas correspondientes. El modelo es particular-
mente adecuado para simular los fenómenos asociados a
la curvatura de los frentes, y permite reproducir la con-
ducción fibrilatoria y los rotores estables en 2 y 3 dimen-
siones. 

Conclusiones. Aunque el modelo de autómata celular
probabilístico desarrollado es sencillo y no requiere car-
gas computacionales elevadas, es capaz de simular de
forma realista fenómenos complejos de gran interés en
electrofisiología.

Palabras clave: Investigación básica. Modelo matemá-
tico. Electrofisiología.
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INTRODUCTION

Computer simulation models of myocardial electri-
cal activation have been widely used in cardiology. In
the field of electrophysiology, several types of models
have provided a deeper understanding of the mecha-
nisms implicated in arrhythmias,1,2 the properties of si-
noatrial node pacemaker activity,3 conduction,4,5 and
reentry circuits.6-8 More complex phenomena such as
fibrillatory activity have also been investigated with
these techniques,9,10 and it has even been possible to
predict some of the effects of antiarrhythmic agents on
ventricular fibrillation11,12 and other arrhythmias.13,14

The main activation models can be classified into 2
major groups. The first is based on the cellular auto-
mata concept, which considers the tissue to be a set of
discrete elements connected to each other. Each ele-
ment, or automaton, can have a finite number of allo-
wable states (e.g., active or inactive), each of which
varies as a function of the preceding state and the state
of the neighboring elements according to a set of pre-
defined rules. The transitions between individual states
govern the evolution and behavior of the system as a
whole and are deterministic, since the system evolves
in an identical manner under the same initial condi-
tions. Cellular automata are easy to program and allow
fast simulations with a moderate computational bur-
den; nevertheless, they have serious limitations when
attempting to reproduce various phenomena of signifi-
cant interest in electrophysiology, such as the effects
of curvature on the activation fronts.15 The second
group of models, known as reaction-diffusion models,
reproduce membrane dynamics by simulating the flow
of ionic currents through the ion channels and the as-
sociated membrane potential.16-18 The connection bet-
ween the cells is modeled by electrical resistors and
the propagation of the impulse is calculated by solving
the equations used to describe electrical circuits.19,20

These models are much more realistic and more accu-
rately reproduce complex situations, but require an ex-
tremely high computational burden and often need
many calculation hours in multiprocessors to simulate
1 or 2 seconds of electrical activity.21 The purpose of
this study was to design a computer model of electric
activation based on a cellular automata system that si-
mulates complex electrophysiological phenomena and
does not require the computational burden needed for
reaction-diffusion models.

MATERIALS AND METHODS

Model Design

The cardiac tissue was modeled as a grid of discrete
elements, or cells, that represent groups of cells with
an average intrinsic behavior, and interact with the
neighboring cells according to a probabilistic rule of

electrical impulse transmission. The behavior of each
cell resembles a cellular automaton that can have 3
states: resting (relaxed and excitable), refractory 1 (ex-
cited, able to excite neighboring cells), and refractory
2 (excited, but not able to excite neighboring cells).
The refractory 1 period is maintained for a fraction F
(around 10%) of the duration of the action potential.
During the rest of the action potential, the cell remains
in refractory 2 period, then changes to the resting va-
lue, which corresponds to the diastolic interval. The
transition between states is governed by three laws:
partial repolarization (transition from refractory 1 to
refractory 2), total repolarization (transition from re-
fractory 2 to rest), and depolarization (transition from
rest to refractory 1). Both partial repolarization and to-
tal repolarization take place in a deterministic manner,
when both the instant of depolarization and the action
potential duration are known. In contrast, depolariza-
tion is defined in probabilistic terms and is based on
two factors: a) the cell excitability (E), which increa-
ses with the time the cell remains at rest, and b) the
excitation quantity around each cell (Q), in which the
greater the excitation quantity, the greater the probabi-
lity that the element is excited. If Pj

exc denotes the pro-
bability that cell j is excited, then these two factors can
be combined in the following formula:

where i is an adjacent element, Ai is the binary exci-
tation state (1 if refractory, 0 if not), and dij is the dis-
tance between the midpoints of elements I, and j. Note
that the formula can be applied to both two- and three-
dimensional substrates, by extending the summatory
function to the neighboring elements on a surface (flat
or curved) or to a three-dimensional space. Both fac-
tors (excitability and excitation quantity) were estima-
ted using 2 macroscopic variables, action potential du-
ration and conduction velocity, taking into account the
electrical restitution properties of cardiac tissue. Ac-
cording to these properties, the action potential dura-
tion and conduction velocity depend on the frequency
of the stimulation to which the tissue is exposed. A
high frequency reduces the diastolic interval, leading
to a brief action potential duration and a slow conduc-
tion velocity, whereas a low frequency produces the
opposite phenomenon. This behavior is shown in the
restitution curves (Figure 1) used to adjust the model
parameters.

Calculation of the Electrograms

In order to calculate the electrograms associated
with the activation standard, the transmembrane cu-
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rrent must be calculated from the action potential. In
our case, we used a prototype action potential obtained
from the model devised by Luo and Rudy,17 which as-
sociates the time for which each cell has been in its
current state with its voltage level. Assuming that car-
diac tissue can be modeled as a medium having a sin-
gle, isotropic, resistive, and homogenous domain, the
electrical potential obtained at a point near the extrace-
llular surface would be calculated as the weighted sum
of the transmembrane currents that originate in the tis-
sue cells.22,23 A unipolar electrogram is modeled as the
recording of the extracellular potential measured by a
single electrode of positive polarity, with the reference
(zero potential) set to infinity. The distance between
the electrode and the surface quantifies the zone in-
fluenced by the electrode, such that the nearer the tis-
sue, the greater the field capture. A bipolar electro-
gram is modeled as the difference in potential between
two points near each other, i.e., as the difference bet-
ween 2 unipolar electrograms.

The simulation code and display of the experiments
was done using the Matlab® computational software

package (The MathWorks, Inc.), using an Intel® Pen-
tium® 4 PC computer (2.19 GHz, single-processor,
256 Mb RAM).

RESULTS

Using a two-dimensional tissue slice of 80×120 ele-
ments with homogeneous properties as a substrate, the
initial, simultaneous activation of a line of elements
generated a flat activation front with a uniform propa-
gation velocity. Figure 2 contains the bipolar and uni-
polar electrograms obtained from various points in
space. Focal stimulation on the same substrate produ-
ced a round front that moved away from the point of
stimulation. The simulated unipolar electrogram pre-
sented a QS morphology with the recording electrode
located on the stimulation area, unlike the rS morpho-
logy, which was obtained at some distance from the
middle. The introduction of unexcitable areas and slow
conduction zones in the model generated stable and
unstable reentry circuits. Figure 3 shows the simula-
tion of a reentry circuit in a figure 8 shape, similar to
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Figure 1. Restitution curves for the
action potential (left) and conduction
velocity (right), based on the diastolic
interval. APD indicates action poten-
tial duration; CV, conduction velocity.

Figure 2. Simulation of a flat wave-
front and the respective unipolar and
bipolar electrograms. From left to
right, 3 time points during activation
in the tissue slice are shown (1: start,
2: middle, 3: end). The positions of
the recording electrode are indicated
by the letters a, b and c. The unipolar
(U) and bipolar (B) electrograms ob-
tained in each position are shown at
the top of the tracing. The right bar
represents the color map of the
membrane voltage, expressed in mV.



those observed in experimental models and in patients
with sustained ventricular tachycardia in chronic myo-
cardial infarction.24-26 The gray rectangles indicate ne-
crotic areas, with the corridor between the two an area
of slow conduction. During stimulation from the far
left portion (top figure), the electrode located on the
slow conduction corridor records an initial potential
(blue arrow) that corresponds to activation of the rapid
conduction area, located outside the necrotic areas.
Subsequently, a late, low-amplitude potential (red
arrow) is recorded separated from the initial one by an
isoelectric line. This potential corresponds to slower
activation of the corridor between the two scars. Simi-
lar potentials have been described in patients with ven-
tricular tachycardia and myocardial infarction.27 Du-
ring reentry (Figure 3, bottom), activation of the slow
conduction area generates a mid-diastolic low-ampli-
tude potential (red arrow). The probabilistic concept of
excitation in our model is particularly appropriate for

simulating the behavior of activation fronts in areas
with a pronounced curvature. The convex border of the
front encounters more surface area to activate in the
direction of activation, and therefore the probability
that neighboring elements in this direction will be ex-
cited decreases. Because conduction velocity depends
essentially on this parameter, it is inversely proportio-
nal to the curvature of the front (Figure 4) and repro-
duces the actual behavior in this situation with no need
for additional ad hoc hypotheses. The model also
allows simulations to be performed in fibrillation pro-
cesses. Using a tissue slice of homogeneous properties
and 80×80 elements as substrate, rapid stimulation
with a frequency above 8-10 Hz generates curvature
and extraordinary fragmentation of the wavefronts in a
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Figure 3. Simulation of a reentry circuit in the shape of a figure “8.”
The red arrows on the tissue slice indicate the direction of activation.
Slow conduction is depicted by a wavy arrow. On each slice, the bipo-
lar electrograms obtained on the corridor between the scar areas are
shown (see text). The rectangle on the right represents the color scale
of membrane voltage, expressed in mV.

Figure 4. Effect of front curvature on conduction velocity, indicated by
white arrows. Note the decrease in velocity with the increase in curva-
ture. The voltage map is shown as in Figures 2 and 3.

Figure 5. Fibrillatory conduction in response to high-frequency (50
Hz) stimulation of the far left portion of the tissue slice. The upper box
contains the electrogram obtained when the electrode is placed on the
tissue surface. The rectangle on the right represents the voltage map,
as in the previous figures.



few seconds, which is typical of fibrillatory conduc-
tion. Figure 5 contains an example of stimulation at 50
Hz. Note how the electrograms obtained in the neigh-
borhood of the substrate reproduce those obtained du-
ring fibrillation. Finally, the model allows three-di-
mensional simulation of the activation process,
providing depth to the grid that sustains the cellular
automata system. The three-dimensional substrate can
be defined with homogeneous properties, assuming the
same behavior as activation on the surface and in depth,
but can also generate a heterogeneous model by modif-
ying the calculation of the distance according to the di-
rection. This last aspect allows different conduction ve-
locities to be simulated in transversal and longitudinal
directions and in depth, reproducing the anisotropic
phenomenon. By using a homogeneous substrate, suc-
cessive stimulation of a cube of 80×80×10 elements
with two flat fronts in the perpendicular direction gene-
rates an activation front with a conduction velocity that
decreases as it nears its rotation center. The extreme
curvature of the activation wave makes it turn around
the core, which remains unexcited, generating a rotor si-
milar to those observed during atrial and ventricular fi-
brillation in various experimental models28-30 (Figure 6,
video 1 available in the January issue at: www.revesp-
cardiol.org/).

DISCUSSION

The cellular activation model described is able to re-
produce many aspects of the electrical behavior of
myocardial tissue, including flat activation fronts,
more or less complex reentry circuits, the effects of
the curvature front, fibrillatory conduction and the ge-
nesis of stable rotors described in experimental models
of atrial and ventricular fibrillation. These phenomena
can be simulated with a cellular automata model based
on simple rules to reduce the computational burden.
The probabilistic nature of excitation is fundamental
to the model, as it naturally reproduces propagation
behavior in curvilinear fronts and allows even stable
rotors to be simulated in homogenous, two- or three-
dimensional media.

The published cardiac impulse activation and propa-
gation models differ in their implementation of the
macroscopic and microscopic cardiac anatomy and
their approach to the electrophysiological properties of
the cell and the intercellular connections. Some mo-
dels attempt to simulate cellular electrophysiology by
reproducing the behavior of the ionic currents that ge-
nerate the transmembrane action potential. These mo-
dels are based on the original equations of the action
potential model in the giant squid axon of Hodgkin
and Huxley,31 and are adapted to the cardiac tissue in
subsequent modifications.16,17,32-35 This approach is the
basis for the so-called reaction-diffusion models and
requires complex mathematical calculations to descri-

be the processes of excitation and impulse propaga-
tion. These types of models have been able to reprodu-
ce the action potential of cardiac cells under normal
conditions as well as in pathological situations such as
ischemia or heart failure.36 They are also highly suita-
ble for assessing the electrophysiological effects of
drugs that act on the ion channels.12,37,38 The effects of
curvature on the fronts simulated with these models
are quite realistic, with the conduction velocity decrea-
sing as the degree of curvature decreases. Rotors and
vortices have also been simulated with these models,
in both 2 and 3 dimensions.9,15 The main drawback of
reaction-diffusion models is that very long computa-
tion times in high-capacity computers are needed.
Even in simplified models,39,40 the computational ne-
eds are very high, making them suitable for simula-
tions of small tissue specimens for a few seconds. An
important advantage of our model with respect to tho-
se described is that it is simpler to program, has a
much lower computational burden and can therefore
simulate complex and/or long-lasting phenomena wit-
hout the need for a sophisticated computing infrastruc-
ture. In fact, our evaluation was done on readily avai-
lable commercial computers in reasonable time frames
for complex simulations, such as those involved in fi-
brillation phenomena. With high-capacity computers,
such as those currently used to run reaction-diffusion
models, the resolution of the model would increase
considerably, achieving results closer to the experi-
mental preparation and enabling the phenomena occu-
rring in an entire chamber of the heart to be simulated
in realistic anatomic detail. The second group of acti-
vation models includes cellular automata systems and
is based on representing the cardiac tissue as a grid of
discrete elements, that can adopt different states as a
function of their preceding state and the state of neigh-
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Fig. 6. Simulation of a spiral activation wave (rotor). The various co-
lors represent the activation time, and the midpoint where they con-
verge corresponds to the core of the rotor (see text).



boring cells.41 In published models, the communica-
tion between one element and its neighbors occurs ac-
cording to a deterministic rule, with each element obli-
ged to change its state or to retain it, depending on the
situation of the surrounding cells. This methodology
has been able to reproduce one-directional functional
blocks with induction of stable reentries around an
obstacle. Spiral waves that rotate around a fixed center
have also been simulated, with fragmentation achieved
by introducing anisotropy in the substrate.41 In addi-
tion, the inherent calculation speed of these models
means they can be used for large surfaces or volumes,
simulating the behavior of complete heart chambers.
Nevertheless, the reproduction of some key phenome-
na in the dynamics of stimulus propagation is rather
unrealistic or requires the incorporation of additional,
hard-to-justify hypotheses in the model. This occurs,
for instance, with the decrease in conduction velocity
produced when the frequency of stimulation is increa-
sed and particularly, with the behavior of curvilinear
fronts, in which the conduction velocity varies inver-
sely with the degree of curvature. This fact forms the
basis of many electrophysiological observations of in-
terest and is hard to reproduce with the available mo-
dels. The introduction of the probabilistic factor in our
model, whereby the excitation probability of each ele-
ment depends on the time since its last repolarization
and on the number of active cells nearby, reproduces
both phenomena naturally, without the need for addi-
tional hypotheses and without increasing the calcula-
tion time. Another phenomenon we were able to repro-
duce directly and that has not been previously reported
with cellular automata systems is fibrillatory conduc-
tion in the substrate when the stimulation frequency is
very high. Since unipolar and bipolar virtual electro-
grams can be obtained at any position in space and at
any angle with respect to the activation surface, the
model is more useful and also establishes a relations-
hip with the electrical tracings directly obtained in ex-
perimental models or the electrophysiology laboratory.

Limitations

The model developed is based on macroscopic pro-
perties of activation, and therefore does not directly
take into account the behavior of the cellular ion chan-
nels and currents. As a result, the model in its current
state would be inadequate for simulating the effects of
drugs or genetic diseases that modify these currents.
This limitation, common to all cellular automata mo-
dels, could be at least partially overcome by introdu-
cing parameters that indirectly reflect the most relevant
aspects of channel dynamics. Secondly, the simulations
have been done on a standard computer with a limited
calculation capacity. The use of more powerful compu-
ters would allow better resolution and probably confer
a more realistic aspect to the simulations. In addition,

our model was evaluated on a simple, homogeneous,
two- or three-dimensional virtual substrate. For the
time being, the anatomy of the chambers, the integra-
tion of anatomical obstacles and the orientation of the
muscle fibers have not been included. Finally, although
the model is capable of qualitatively reproducing many
interesting phenomena in basic electrophysiology, we
have not performed a quantitative validation in experi-
mental preparations. This validation would allow a bet-
ter fit of the model parameters and an assessment of
their predictive capacity.
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